IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/2e6jn.html
   My bibliography  Save this paper

Solar Basic Service – An Idea for Just Acceleration of the Energy Transition

Author

Listed:
  • Desing, Harald
  • Schlesier, Hauke
  • Gauch, Marcel

Abstract

What if every person on Earth would get a personal budget of solar energy, free to use individually or sell to others? A solar basic service—similar to other basic services like public education, roads or health care—can facilitate universal access to energy, end energy poverty, increase energy security, and trigger further investments to become independent of fossil fuels. Acknowledging the urgency for climate action in the face of a rapidly shrinking remaining carbon budget, it aims at accelerating the energy transition in a socially just way. It also aims at reducing barriers, potentially triggering positive social tipping towards a sunflower society predominantly powered by direct solar energy. Furthermore, it may help to legitimize currently unpopular, but highly necessary climate policies related to restricting fossil fuels.

Suggested Citation

  • Desing, Harald & Schlesier, Hauke & Gauch, Marcel, 2024. "Solar Basic Service – An Idea for Just Acceleration of the Energy Transition," OSF Preprints 2e6jn, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:2e6jn
    DOI: 10.31219/osf.io/2e6jn
    as

    Download full text from publisher

    File URL: https://osf.io/download/674064ebc076171e577a4bae/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/2e6jn?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Teng Liu & Dean Chen & Lan Yang & Jun Meng & Zanchenling Wang & Josef Ludescher & Jingfang Fan & Saini Yang & Deliang Chen & Jürgen Kurths & Xiaosong Chen & Shlomo Havlin & Hans Joachim Schellnhuber, 2023. "Teleconnections among tipping elements in the Earth system," Nature Climate Change, Nature, vol. 13(1), pages 67-74, January.
    2. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Mr. Simon Black & Antung A. Liu & Ian W.H. Parry & Nate Vernon-Lin, 2023. "IMF Fossil Fuel Subsidies Data: 2023 Update," IMF Working Papers 2023/169, International Monetary Fund.
    4. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    5. Harald Desing & Rolf Widmer, 2022. "How Much Energy Storage can We Afford? On the Need for a Sunflower Society, Aligning Demand with Renewable Supply," Biophysical Economics and Resource Quality, Springer, vol. 7(2), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:osf:osfxxx:2e6jn_v1 is not listed on IDEAS
    2. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
    3. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    4. Simon Lineykin & Abhishek Sharma & Moshe Averbukh, 2023. "Eventual Increase in Solar Electricity Production and Desalinated Water through the Formation of a Channel between the Mediterranean and the Dead Sea," Energies, MDPI, vol. 16(11), pages 1-17, May.
    5. Jason Moore & Bahman Shabani, 2016. "A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies," Energies, MDPI, vol. 9(9), pages 1-28, August.
    6. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
    7. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    8. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    9. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    11. Sanjay Singh Baroniya & Mamta Bhoj Baroniya, 2025. "Review of Green Technologies for Environmental Protection: Innovations and Impact," International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 10(9), pages 484-491, October.
    12. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    13. Anna Marciniuk-Kluska & Mariusz Kluska, 2025. "Energy Recovery from Municipal Biodegradable Waste in a Circular Economy," Energies, MDPI, vol. 18(9), pages 1-17, April.
    14. Xin Li & Huadong Guo & Guodong Cheng & Xiaoyu Song & Youhua Ran & Min Feng & Tao Che & Xinwu Li & Lei Wang & Anmin Duan & Donghui Shangguan & Deliang Chen & Rui Jin & Jie Deng & Jianbin Su & Bin Cao, 2025. "Polar regions are critical in achieving global sustainable development goals," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    15. Krupa, Joel & Harvey, L.D. Danny, 2017. "Renewable electricity finance in the United States: A state-of-the-art review," Energy, Elsevier, vol. 135(C), pages 913-929.
    16. Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.
    17. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    18. Wiśniewska, Agnieszka & Liczmańska-Kopcewicz, Katarzyna & Pypłacz, Paula, 2022. "Antecedents of young adults’ willingness to support brands investing in renewable energy sources," Renewable Energy, Elsevier, vol. 190(C), pages 177-187.
    19. Aramendia, Emmanuel & Brockway, Paul E. & Taylor, Peter G. & Norman, Jonathan B., 2024. "Exploring the effects of mineral depletion on renewable energy technologies net energy returns," Energy, Elsevier, vol. 290(C).
    20. Ugo Bardi & Sgouris Sgouridis, 2017. "In Support of a Physics-Based Energy Transition Planning: Sowing Our Future Energy Needs," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-5, December.
    21. Harvey, L.D. Danny, 2018. "Resource implications of alternative strategies for achieving zero greenhouse gas emissions from light-duty vehicles by 2060," Applied Energy, Elsevier, vol. 212(C), pages 663-679.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:2e6jn. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.