IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6124-d1437385.html
   My bibliography  Save this article

A Comprehensive Approach to Biodiesel Blend Selection Using GRA-TOPSIS: A Case Study of Waste Cooking Oils in Egypt

Author

Listed:
  • Marwa M. Sleem

    (Faculty of Technological Industry and Energy, Delta Technological University, Quesna 32684, Egypt)

  • Osama Y. Abdelfattah

    (Faculty of Technological Industry and Energy, Delta Technological University, Quesna 32684, Egypt)

  • Amr A. Abohany

    (Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh 33511, Egypt)

  • Shaymaa E. Sorour

    (Department of Management Information Systems, School of Business, King Faisal University, Al Hofuf 31982, Saudi Arabia
    Faculty of Specific Education, Kafrelsheikh University, Kafrelsheikh 33511, Egypt)

Abstract

The transition to sustainable energy sources is critical for addressing global environmental challenges. In 2017, Egypt produced about 500,000 tons of waste cooking oil from various sources including food industries, restaurants and hotels. Sadly, 90% of households choose to dispose of their used cooking oil by pouring it down the drain or into their village’s sewers instead of using proper disposal methods. The process involves converting waste cooking oil (WCO) into biodiesel.This study introduces a multi-criteria decision-making approach to identify the optimal biodiesel blend from waste cooking oils in Egypt. By leveraging the grey relational analysis (GRA) combined with the technique for order preference by similarity to the ideal solution (TOPSIS), we evaluate eight biodiesel blends (diesel, B5, B10, B20, B30, B50, B75, B100) against various performance metrics, including carbon monoxide, carbon dioxide, nitrogen oxides, hydrocarbons, particulate matter, engine power, fuel consumption, engine noise, and exhaust gas temperature. The experimental analysis used a single-cylinder, constant-speed, direct-injection eight cylinder diesel engine under varying load conditions. Our methodology involved feature engineering and model building to enhance predictive accuracy. The results demonstrated significant improvements in monitoring accuracy, with diesel, B5, and B20 emerging as the top-performing blends. Notably, the B5 blend showed the best overall performance, balancing efficiency and emissions. This study highlights the potential of integrating advanced AI-driven decision-making frameworks into biodiesel blend selection, promoting cleaner energy solutions and optimizing engine performance. Our findings underscore the substantial benefits of waste cooking oils for biodiesel production, contributing to environmental sustainability and energy efficiency.

Suggested Citation

  • Marwa M. Sleem & Osama Y. Abdelfattah & Amr A. Abohany & Shaymaa E. Sorour, 2024. "A Comprehensive Approach to Biodiesel Blend Selection Using GRA-TOPSIS: A Case Study of Waste Cooking Oils in Egypt," Sustainability, MDPI, vol. 16(14), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6124-:d:1437385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moschini, GianCarlo & Cui, Jingbo & Lapan, Harvey E., . "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(3), pages 1-28.
    2. Masoud Dehghani Soufi & Barat Ghobadian & Gholamhassan Najafi & Mohammad Reza Sabzimaleki & Talal Yusaf, 2015. "TOPSIS Multi-Criteria Decision Modeling Approach for Biolubricant Selection for Two-Stroke Petrol Engines," Energies, MDPI, vol. 8(12), pages 1-11, December.
    3. Ioana-Ancuta Iancu & Patrick Hendrick & Micu DDM Dan Doru & Adrian Cote, 2023. "Pandemic-Induced Shifts in Climate Change Perception and Energy Consumption Behaviors: A Cross-Country Analysis of Belgium, Italy, Romania, and Sweden," ULB Institutional Repository 2013/377982, ULB -- Universite Libre de Bruxelles.
    4. Jiahui Su & Yidi Sun, 2023. "An Improved TOPSIS Model Based on Cumulative Prospect Theory: Application to ESG Performance Evaluation of State-Owned Mining Enterprises," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    5. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    6. Martin Kügemann & Heracles Polatidis, 2022. "Methodological Framework to Select Evaluation Criteria for Multi-Criteria Decision Analysis of Road Transportation Fuels and Vehicles," Energies, MDPI, vol. 15(14), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    2. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    3. Anna Marciniuk-Kluska & Mariusz Kluska, 2025. "Energy Recovery from Municipal Biodegradable Waste in a Circular Economy," Energies, MDPI, vol. 18(9), pages 1-17, April.
    4. Krupa, Joel & Harvey, L.D. Danny, 2017. "Renewable electricity finance in the United States: A state-of-the-art review," Energy, Elsevier, vol. 135(C), pages 913-929.
    5. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    6. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    7. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    8. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    9. Ronnie D. Lipschutz & Dustin Mulvaney, 2013. "The road not taken, round II: centralized vs. distributed energy strategies and human security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 22, pages 483-506, Edward Elgar Publishing.
    10. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    11. Yuxue Yang & Xuejiao Tan & Yafei Shi & Jun Deng, 2023. "What are the core concerns of policy analysis? A multidisciplinary investigation based on in-depth bibliometric analysis," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    12. Martin Seidl & Manal Saifane, 2021. "A green intensity index to better assess the multiple functions of urban vegetation with an application to Paris metropolitan area," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15204-15224, October.
    13. Peter Lund, 2012. "The European Union challenge: integration of energy, climate, and economic policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 60-68, July.
    14. Lingfeng, Zhong & Siyu, Liu & Rui, Liu & Yufeng, Chen & Jing, Li & Xiaodong, Miao, 2025. "Mixture formation characteristics and comprehensive evaluation of a biodiesel-fueled spark ignition aviation piston engine," Energy, Elsevier, vol. 314(C).
    15. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    17. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    18. Alabi, Oluwafisayo & Turner, Karen & Figus, Gioele & Katris, Antonios & Calvillo, Christian, 2020. "Can spending to upgrade electricity networks to support electric vehicles (EVs) roll-outs unlock value in the wider economy?," Energy Policy, Elsevier, vol. 138(C).
    19. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    20. Giani, Paolo & Tagle, Felipe & Genton, Marc G. & Castruccio, Stefano & Crippa, Paola, 2020. "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, Elsevier, vol. 269(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6124-:d:1437385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.