IDEAS home Printed from
   My bibliography  Save this paper

A Sharper Ratio: A General Measure for Correctly Ranking Non-Normal Investment Risks


  • Kent Smetters
  • Xingtan Zhang


While the Sharpe ratio is still the dominant measure for ranking risky assets, a substantial effort has been made over the past three decades to find a way to account for non-Normally distributed risks. This paper derives a generalized ranking measure which, under a regularity condition, correctly ranks risks relative to the original investor problem for a broad probability space. Moreover, like the Sharpe ratio, the generalized measure maintains wealth separation for the broad HARA utility class. Besides being effective in the presence of "fat tails," the generalized measure is also a foundation for multi-asset class portfolio optimization due to its ability to pairwise rank two risks following two different probability distributions. This paper also explores the theoretical foundations of risk ranking, including proving a key impossibility theorem: any ranking measure that is valid for non-Normal distributions cannot generically be free from investor preferences. Finally, this paper shows that the generalized ratio provides substantially more ranking power than simpler approximation measures that have sometimes been used in the past to account for non-Normal higher moments, even if those approximations are extended to include an infinite number of higher moments.

Suggested Citation

  • Kent Smetters & Xingtan Zhang, 2013. "A Sharper Ratio: A General Measure for Correctly Ranking Non-Normal Investment Risks," NBER Working Papers 19500, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:19500
    Note: AP

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. M. S. Feldstein, 1969. "Mean-Variance Analysis in the Theory of Liquidity Preference and Portfolio Selection," Review of Economic Studies, Oxford University Press, vol. 36(1), pages 5-12.
    2. Michael C. Jensen, 1968. "The Performance Of Mutual Funds In The Period 1945–1964," Journal of Finance, American Finance Association, vol. 23(2), pages 389-416, May.
    3. Robert J. Aumann & Roberto Serrano, 2008. "An Economic Index of Riskiness," Journal of Political Economy, University of Chicago Press, vol. 116(5), pages 810-836, October.
    4. Vikas Agarwal, 2004. "Risks and Portfolio Decisions Involving Hedge Funds," Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 63-98.
    5. Bodie, Zvi & Merton, Robert C. & Samuelson, William F., 1992. "Labor supply flexibility and portfolio choice in a life cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 427-449.
    6. William Goetzmann & Jonathan Ingersoll & Matthew I. Spiegel & Ivo Welch, 2002. "Sharpening Sharpe Ratios," NBER Working Papers 9116, National Bureau of Economic Research, Inc.
    7. Sergiu Hart, 2011. "Comparing Risks by Acceptance and Rejection," Journal of Political Economy, University of Chicago Press, vol. 119(4), pages 617-638.
    8. Robert J. Barro, 2009. "Rare Disasters, Asset Prices, and Welfare Costs," American Economic Review, American Economic Association, vol. 99(1), pages 243-264, March.
    9. Xavier Gabaix, 2012. "Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in Macro-Finance," The Quarterly Journal of Economics, Oxford University Press, vol. 127(2), pages 645-700.
    10. Jonathan Ingersoll & Ivo Welch, 2007. "Portfolio Performance Manipulation and Manipulation-proof Performance Measures," Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1503-1546, 2007 17.
    11. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Multi-moment Asset Allocation and Pricing Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308990, HAL.
    12. Dowd, Kevin, 2000. "Adjusting for risk:: An improved Sharpe ratio," International Review of Economics & Finance, Elsevier, vol. 9(3), pages 209-222, July.
    13. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    14. Kane, Alex, 1982. "Skewness Preference and Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(01), pages 15-25, March.
    15. Owen, Joel & Rabinovitch, Ramon, 1983. " On the Class of Elliptical Distributions and Their Applications to the Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 38(3), pages 745-752, June.
    16. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. " Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    17. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    18. Kraus, Alan & Litzenberger, Robert H, 1976. "Skewness Preference and the Valuation of Risk Assets," Journal of Finance, American Finance Association, vol. 31(4), pages 1085-1100, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:19500. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.