IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/15147.html
   My bibliography  Save this paper

Identifying Heterogeneity in Economic Choice Models

Author

Listed:
  • Jeremy T. Fox
  • Amit Gandhi

Abstract

We show how to nonparametrically identify the distribution that characterizes heterogeneity among agents in a general class of structural choice models. We introduce an axiom that we term separability and prove that separability of a structural model ensures identification. The main strength of separability is that it makes verifying the identification of nonadditive models a tractable task because it is a condition that is stated directly in terms of the choice behavior of agents in the model. We use separability to prove several new results. We prove the identification of the distribution of random functions and marginal effects in a nonadditive regression model. We also identify the distribution of utility functions in the multinomial choice model. Finally, we extend 2SLS to have random functions in both the first and second stages. This instrumental variables strategy applies equally to multinomial choice models with endogeneity.

Suggested Citation

  • Jeremy T. Fox & Amit Gandhi, 2009. "Identifying Heterogeneity in Economic Choice Models," NBER Working Papers 15147, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:15147 Note: IO LS PR TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w15147.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Michael Carter, 2001. "Foundations of Mathematical Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531925, January.
    2. Michael Carter, 2001. "Foundations of Mathematical Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262032899, January.
    3. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    4. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012. "The random coefficients logit model is identified," Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
    2. Peter C. Reiss, 2011. "Structural Workshop Paper --Descriptive, Structural, and Experimental Empirical Methods in Marketing Research," Marketing Science, INFORMS, vol. 30(6), pages 950-964, November.
    3. Andrew Chesher & Adam M. Rosen & Konrad Smolinski, 2013. "An instrumental variable model of multiple discrete choice," Quantitative Economics, Econometric Society, vol. 4(2), pages 157-196, July.
    4. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82, pages 1749-1797, September.
    5. Steven T. Berry & Philip A. Haile, 2009. "Identification of a Heterogeneous Generalized Regression Model with Group Effects," Cowles Foundation Discussion Papers 1732, Cowles Foundation for Research in Economics, Yale University.
    6. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," NBER Working Papers 15276, National Bureau of Economic Research, Inc.
    7. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • L0 - Industrial Organization - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:15147. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.