IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/12053.html
   My bibliography  Save this paper

Competing Approaches to Forecasting Elections: Economic Models, Opinion Polling and Prediction Markets

Author

Listed:
  • Andrew Leigh
  • Justin Wolfers

Abstract

We review the efficacy of three approaches to forecasting elections: econometric models that project outcomes on the basis of the state of the economy; public opinion polls; and election betting (prediction markets). We assess the efficacy of each in light of the 2004 Australian election. This election is particularly interesting both because of innovations in each forecasting technology, and also because the increased majority achieved by the Coalition surprised most pundits. While the evidence for economic voting has historically been weak for Australia, the 2004 election suggests an increasingly important role for these models. The performance of polls was quite uneven, and predictions both across pollsters, and through time, vary too much to be particularly useful. Betting markets provide an interesting contrast, and a slew of data from various betting agencies suggests a more reasonable degree of volatility, and useful forecasting performance both throughout the election cycle and across individual electorates.

Suggested Citation

  • Andrew Leigh & Justin Wolfers, 2006. "Competing Approaches to Forecasting Elections: Economic Models, Opinion Polling and Prediction Markets," NBER Working Papers 12053, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:12053
    Note: AP EFG POL
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w12053.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Berg, Joyce & Forsythe, Robert & Nelson, Forrest & Rietz, Thomas, 2008. "Results from a Dozen Years of Election Futures Markets Research," Handbook of Experimental Economics Results, in: Charles R. Plott & Vernon L. Smith (ed.), Handbook of Experimental Economics Results, edition 1, volume 1, chapter 80, pages 742-751, Elsevier.
    2. Fair, Ray C, 1978. "The Effect of Economic Events on Votes for President," The Review of Economics and Statistics, MIT Press, vol. 60(2), pages 159-173, May.
    3. Erik Snowberg & Justin Wolfers & Eric Zitzewitz, 2007. "Partisan Impacts on the Economy: Evidence from Prediction Markets and Close Elections," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(2), pages 807-829.
    4. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    5. Wolfers, Justin & Zitzewitz, Eric, 2006. "Interpreting Prediction Market Prices as Probabilities," IZA Discussion Papers 2092, Institute of Labor Economics (IZA).
    6. repec:bla:ecorec:v:76:y:2000:i:235:p:354-64 is not listed on IDEAS
    7. Lisa Cameron & Mark Crosby, 2000. "It's the Economy Stupid: Macroeconomics and Federal Elections in Australia," The Economic Record, The Economic Society of Australia, vol. 76(235), pages 354-364, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Snowberg & Justin Wolfers & Eric Zitzewitz, 2011. "How Prediction Markets can Save Event Studies," CAMA Working Papers 2011-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Fabio Milani, 2010. "Public option and private profits," Applied Health Economics and Health Policy, Springer, vol. 8(3), pages 155-165, May.
    3. Coulomb, Renaud & Sangnier, Marc, 2014. "The impact of political majorities on firm value: Do electoral promises or friendship connections matter?," Journal of Public Economics, Elsevier, vol. 115(C), pages 158-170.
    4. Wolfers, Justin & Zitzewitz, Eric, 2006. "Prediction Markets in Theory and Practice," CEPR Discussion Papers 5578, C.E.P.R. Discussion Papers.
    5. Snowberg, Erik & Wolfers, Justin & Zitzewitz, Eric, 2013. "Prediction Markets for Economic Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 657-687, Elsevier.
    6. Coulomb, Renaud & Sangnier, Marc, 2014. "The impact of political majorities on firm value: Do electoral promises or friendship connections matter?," Journal of Public Economics, Elsevier, vol. 115(C), pages 158-170.
    7. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    8. Gikas Hardouvelis & Dimitrios Thomakos, 2007. "Consumer Confidence and Elections," Working Papers 0003, University of Peloponnese, Department of Economics.
    9. Bo Cowgill & Eric Zitzewitz, 2015. "Corporate Prediction Markets: Evidence from Google, Ford, and Firm X," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1309-1341.
    10. Justin Wolfers & Eric Zitzewitz, 2006. "Five Open Questions About Prediction Markets," NBER Working Papers 12060, National Bureau of Economic Research, Inc.
    11. Franch, Fabio, 2021. "Political preferences nowcasting with factor analysis and internet data: The 2012 and 2016 US presidential elections," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    12. Hamish Greenop‐Roberts, 2022. "Forecasting Federal Elections: New Data From 2010–2019 and a Discussion of Alternative and Emerging Methods," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 55(1), pages 25-39, March.
    13. Boulu-Reshef, Béatrice & Comeig, Irene & Donze, Robert & Weiss, Gregory D., 2016. "Risk aversion in prediction markets: A framed-field experiment," Journal of Business Research, Elsevier, vol. 69(11), pages 5071-5075.
    14. Chadimová, Kateřina & Cahlíková, Jana & Cingl, Lubomír, 2022. "Foretelling what makes people pay: Predicting the results of field experiments on TV fee enforcement," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 100(C).
    15. Tideman, T. Nicolaus & Plassmann, Florenz, 2010. "Pricing externalities," European Journal of Political Economy, Elsevier, vol. 26(2), pages 176-184, June.
    16. Paul J. Healy & Sera Linardi & J. Richard Lowery & John O. Ledyard, 2010. "Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders," Management Science, INFORMS, vol. 56(11), pages 1977-1996, November.
    17. Camerer, Colin & Dreber, Anna & Forsell, Eskil & Ho, Teck-Hua & Huber, Jurgen & Johannesson, Magnus & Kirchler, Michael & Almenberg, Johan & Altmejd, Adam & Chan, Taizan & Heikensten, Emma & Holzmeist, 2016. "Evaluating replicability of laboratory experiments in Economics," MPRA Paper 75461, University Library of Munich, Germany.
    18. Joyce E. Berg & John Geweke & Thomas A. Rietz, 2010. "Memoirs of an indifferent trader: Estimating forecast distributions from prediction markets," Quantitative Economics, Econometric Society, vol. 1(1), pages 163-186, July.
    19. Mikuláš Gangur & Miroslav Plevný, 2014. "Tools for Consumer Rights Protection in the Prediction of Electronic Virtual Market and Technological Changes," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 578-578, May.
    20. Erik Snowberg & Justin Wolfers & Eric Zitzewitz, 2007. "Partisan Impacts on the Economy: Evidence from Prediction Markets and Close Elections," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(2), pages 807-829.

    More about this item

    JEL classification:

    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:12053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.