IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/10516.html
   My bibliography  Save this paper

HIV Breakthroughs and Risk Sexual Behavior

Author

Listed:
  • Dana Goldman
  • Darius Lakdawalla
  • Neeraj Sood

Abstract

Recent breakthroughs in the treatment of HIV have coincided with an increase in infection rates and an eventual slowing of reductions in HIV mortality. These trends may be causally related, if treatment improves the health and functional status of HIV+ individuals and allows them to engage in more sexual risk-taking. We examine this hypothesis empirically using access to health insurance as an instrument for treatment status. We find that treatment results in more sexual risk-taking by HIV+ adults, and possibly more of other risky behaviors like drug abuse. This relationship implies that breakthroughs in treating an incurable disease like HIV can increase precautionary behavior by the uninfected and thus reduce welfare. We also show that, in the presence of this effect, treatment and prevention are social complements for incurable diseases, even though they are substitutes for curable ones. Finally, there is less under-provision of treatment for an incurable disease than a curable one, because of the negative externalities associated with treating an incurable disease.

Suggested Citation

  • Dana Goldman & Darius Lakdawalla & Neeraj Sood, 2004. "HIV Breakthroughs and Risk Sexual Behavior," NBER Working Papers 10516, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:10516
    Note: HE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w10516.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Philipson, Tomas, 2000. "Economic epidemiology and infectious diseases," Handbook of Health Economics, in: A. J. Culyer & J. P. Newhouse (ed.), Handbook of Health Economics, edition 1, volume 1, chapter 33, pages 1761-1799, Elsevier.
    2. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    3. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
    2. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    3. Bensch, Gunther & Gotz, Gunnar & Peters, Jörg, 2020. "Effects of rural electrification on employment: A comment on Dinkelman (2011)," Ruhr Economic Papers 840, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    4. Iglesias Emma M., 2011. "Constrained k-class Estimators in the Presence of Weak Instruments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-13, September.
    5. Russell Davidson & James G. MacKinnon, 2006. "The case against JIVE," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 827-833, September.
    6. Keisuke Hirano & Jack R. Porter, 2015. "Location Properties of Point Estimators in Linear Instrumental Variables and Related Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 720-733, December.
    7. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.
    8. Cai, Zongwu & Fang, Ying & Su, Jia, 2012. "Reducing asymptotic bias of weak instrumental estimation using independently repeated cross-sectional information," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 180-185.
    9. Bekker, Paul & Kleibergen, Frank, 2003. "Finite-Sample Instrumental Variables Inference Using An Asymptotically Pivotal Statistic," Econometric Theory, Cambridge University Press, vol. 19(5), pages 744-753, October.
    10. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    11. Aureo de Paula & Gil Shapira & Petra E. Todd, 2008. "How Beliefs about HIV Status Affect Risky Behaviors: Evidence from Malawi, Fifth Version," PIER Working Paper Archive 10-023, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 10 Jul 2010.
    12. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    13. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    14. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    15. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    16. Phillips, Peter C.B., 2006. "A Remark On Bimodality And Weak Instrumentation In Structural Equation Estimation," Econometric Theory, Cambridge University Press, vol. 22(5), pages 947-960, October.
    17. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics Working Papers 2019-04, University of Adelaide, School of Economics.
    18. Philip Shaw & Marina‐Selini Katsaiti & Marius Jurgilas, 2011. "Corruption And Growth Under Weak Identification," Economic Inquiry, Western Economic Association International, vol. 49(1), pages 264-275, January.
    19. D.S. Poskitt & C.L. Skeels, 2005. "Small Concentration Asymptotics and Instrumental Variables Inference," Department of Economics - Working Papers Series 948, The University of Melbourne.
    20. Zivot, Eric & Startz, Richard & Nelson, Charles R, 1998. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1119-1146, November.

    More about this item

    JEL classification:

    • I1 - Health, Education, and Welfare - - Health

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:10516. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.