IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0314.html
   My bibliography  Save this paper

Instrumental Variables Methods in Experimental Criminological Research: What, Why, and How?

Author

Listed:
  • Joshua Angrist

Abstract

Quantitative criminology focuses on straightforward causal questions that are ideally addressed with randomized experiments. In practice, however, traditional randomized trials are difficult to implement in the untidy world of criminal justice. Even when randomized trials are implemented, not everyone is treated as intended and some control subjects may obtain experimental services. Treatments may also be more complicated than a simple yes/no coding can capture. This paper argues that the instrumental variables methods (IV) used by economists to solve omitted variables bias problems in observational studies also solve the major statistical problems that arise in imperfect criminological experiments. In general, IV methods estimate the causal effect of treatment on subjects that are induced to comply with a treatment by virtue of the random assignment of intended treatment. The use of IV in criminology is illustrated through a re-analysis of the Minneapolis Domestic Violence Experiment.

Suggested Citation

  • Joshua Angrist, 2005. "Instrumental Variables Methods in Experimental Criminological Research: What, Why, and How?," NBER Technical Working Papers 0314, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0314
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0314.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Joshua D. Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 69-85, Fall.
    2. Alan B. Krueger, 1999. "Experimental Estimates of Education Production Functions," The Quarterly Journal of Economics, Oxford University Press, vol. 114(2), pages 497-532.
    3. Imbens, G. & Angrist, J.D., 1992. "Average Causal Response with Variable Treatment Intensity," Harvard Institute of Economic Research Working Papers 1611, Harvard - Institute of Economic Research.
    4. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics,in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366 Elsevier.
    5. Woodbury, Stephen A & Spiegelman, Robert G, 1987. "Bonuses to Workers and Employers to Reduce Unemployment: Randomized Trials in Illinois," American Economic Review, American Economic Association, vol. 77(4), pages 513-530, September.
    6. Howard S. Bloom, 1984. "Accounting for No-Shows in Experimental Evaluation Designs," Evaluation Review, , vol. 8(2), pages 225-246, April.
    7. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-336, June.
    8. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    9. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    10. Justin McCrary, 2002. "Using Electoral Cycles in Police Hiring to Estimate the Effect of Police on Crime: Comment," American Economic Review, American Economic Association, vol. 92(4), pages 1236-1243, September.
    11. Donald B. Rubin, 1977. "Assignment to Treatment Group on the Basis of a Covariate," Journal of Educational and Behavioral Statistics, , vol. 2(1), pages 1-26, March.
    12. Joshua D. Angrist & Victor Lavy, 2002. "The Effect of High School Matriculation Awards: Evidence from Randomized Trials," NBER Working Papers 9389, National Bureau of Economic Research, Inc.
    13. Eva Lantos Rezmovic & Thomas J. Cook & L. Douglas Dobson, 1981. "Beyond Random Assignment," Evaluation Review, , vol. 5(1), pages 51-67, February.
    14. Levitt, Steven D, 1997. "Using Electoral Cycles in Police Hiring to Estimate the Effect of Police on Crime," American Economic Review, American Economic Association, vol. 87(3), pages 270-290, June.
    15. Joshua D. Angrist & Victor Lavy, 1997. "Using Maimonides' Rule to Estimate the Effect of Class Size on Student Achievement," NBER Working Papers 5888, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Siddique, 2013. "Partially Identified Treatment Effects Under Imperfect Compliance: The Case of Domestic Violence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 504-513, June.
    2. Coviello, Decio & Mariniello, Mario, 2014. "Publicity requirements in public procurement: Evidence from a regression discontinuity design," Journal of Public Economics, Elsevier, vol. 109(C), pages 76-100.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.