IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Instrumental Variables Methods in Experimental Criminological Research: What, Why, and How?

  • Joshua Angrist

Quantitative criminology focuses on straightforward causal questions that are ideally addressed with randomized experiments. In practice, however, traditional randomized trials are difficult to implement in the untidy world of criminal justice. Even when randomized trials are implemented, not everyone is treated as intended and some control subjects may obtain experimental services. Treatments may also be more complicated than a simple yes/no coding can capture. This paper argues that the instrumental variables methods (IV) used by economists to solve omitted variables bias problems in observational studies also solve the major statistical problems that arise in imperfect criminological experiments. In general, IV methods estimate the causal effect of treatment on subjects that are induced to comply with a treatment by virtue of the random assignment of intended treatment. The use of IV in criminology is illustrated through a re-analysis of the Minneapolis Domestic Violence Experiment.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nber.org/papers/t0314.pdf
Download Restriction: no

Paper provided by National Bureau of Economic Research, Inc in its series NBER Technical Working Papers with number 0314.

as
in new window

Length:
Date of creation: Sep 2005
Date of revision:
Handle: RePEc:nbr:nberte:0314
Contact details of provider: Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Web page: http://www.nber.org
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Joshua Angrist, 1989. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," Working Papers 631, Princeton University, Department of Economics, Industrial Relations Section..
  2. Joshua D. Angrist & Victor Lavy, 1997. "Using Maimonides' Rule to Estimate the Effect of Class Size on Student Achievement," NBER Working Papers 5888, National Bureau of Economic Research, Inc.
  3. Levitt, Steven D, 1997. "Using Electoral Cycles in Police Hiring to Estimate the Effect of Police on Crime," American Economic Review, American Economic Association, vol. 87(3), pages 270-90, June.
  4. Joshua D. Angrist & Guido W. Imbens, 1995. "Identification and Estimation of Local Average Treatment Effects," NBER Technical Working Papers 0118, National Bureau of Economic Research, Inc.
  5. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
  6. Woodbury, Stephen A & Spiegelman, Robert G, 1987. "Bonuses to Workers and Employers to Reduce Unemployment: Randomized Trials in Illinois," American Economic Review, American Economic Association, vol. 77(4), pages 513-30, September.
  7. Imbens, G. & Angrist, J.D., 1992. "Average Causal Response with Variable Treatment Intensity," Harvard Institute of Economic Research Working Papers 1611, Harvard - Institute of Economic Research.
  8. Joshua Angrist & Alan Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Working Papers 834, Princeton University, Department of Economics, Industrial Relations Section..
  9. Alan Krueger, 1997. "Experimental Estimates of Education Production Functions," Working Papers 758, Princeton University, Department of Economics, Industrial Relations Section..
  10. Joshua Angrist & Alan Krueger, 1998. "Empirical Strategies in Labor Economics," Working Papers 780, Princeton University, Department of Economics, Industrial Relations Section..
  11. Angrist, Joshua & Lavy, Victor, 2002. "The Effect of High School Matriculation Awards: Evidence from Randomized Trials," CEPR Discussion Papers 3827, C.E.P.R. Discussion Papers.
  12. Justin McCrary, 2002. "Using Electoral Cycles in Police Hiring to Estimate the Effect of Police on Crime: Comment," American Economic Review, American Economic Association, vol. 92(4), pages 1236-1243, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0314. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.