IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0261.html
   My bibliography  Save this paper

Bootstrap Tests for the Effect of a Treatment on the Distribution of an Outcome Variable

Author

Listed:
  • Alberto Abadie

Abstract

This paper considers the problem of assessing the distributional consequences of a treatment on some outcome variable of interest when treatment intake is (possibly) non-randomized but there is a binary instrument available for the researcher. Such scenario is common in observational studies and in randomized experiments with imperfect compliance. One possible approach to this problem is to compare the counterfactual cumulative distribution functions of the outcome with and without the treatment. Here, it is shown how to estimate these distributions using instrumental variable methods and a simple bootstrap procedure is proposed to test distributional hypotheses, such as equality of distributions, first-order stochastic dominance and second order stochastic dominance. These tests and estimators are applied to the study of the effects of veteran status on the distribution of civilian earnings. The results show a negative effect of military service in Vietnam that appears to be concentrated on the lower tail of the distribution of earnings. First order stochastic dominance cannot be rejected by the data.

Suggested Citation

  • Alberto Abadie, 2000. "Bootstrap Tests for the Effect of a Treatment on the Distribution of an Outcome Variable," NBER Technical Working Papers 0261, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0261
    Note: TWP LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0261.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Donald W. K. Andrews, 1997. "A Conditional Kolmogorov Test," Econometrica, Econometric Society, vol. 65(5), pages 1097-1128, September.
    2. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    3. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-336, June.
    4. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-235, April.
    5. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    6. Joshua D. Angrist & Alan B. Krueger, 1993. "Split Sample Instrumental Variables," Working Papers 699, Princeton University, Department of Economics, Industrial Relations Section..
    7. Foster, James E & Shorrocks, Anthony F, 1988. "Poverty Orderings," Econometrica, Econometric Society, vol. 56(1), pages 173-177, January.
    8. Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-1193, September.
    9. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 555-574.
    10. J.D. Angrist & Guido W. Imbens & D.B. Rubin, 1993. "Identification of Causal Effects Using Instrumental Variables," NBER Technical Working Papers 0136, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Abadie, 2000. "Semiparametric Estimation of Instrumental Variable Models for Causal Effects," NBER Technical Working Papers 0260, National Bureau of Economic Research, Inc.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0261. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.