IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Asymptotic Properties of Quasi-Maximum Likelihood Estimators and Test Statistics

  • Thomas E. MaCurdy
Registered author(s):

    We examine the implications of arbitrage in a market with many assets. The absence of arbitrage opportunities implies that the linear functionals that give the mean and cost of a portfolio are continuous; hence there exist unique portfolios that represent these functionals. The mean variance efficient set is a cone generated by these portfolios. Ross [16, 18J showed that if there is a factor structure, then the distance between the vector or mean returns and the space spanned by the factor loadings is bounded as the number of assets increases. We show that if the covariance matrix of asset returns has only K unbounded eigenvalues, then the corresponding K eigenvectors converge and play the role of factor loadings in Ross' result. Hence only a principal components analysis is needed to test the arbitrage pricing theory. Our eigenvalue conditional can hold even though conventional measures of the approximation error in a K factor model are unbounded. We also resolve the question of when a market with many assets permits so much diversification that risk-free investment opportunities are available.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by National Bureau of Economic Research, Inc in its series NBER Technical Working Papers with number 0014.

    in new window

    Date of creation: Jun 1981
    Date of revision:
    Handle: RePEc:nbr:nberte:0014
    Note: LS
    Contact details of provider: Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
    Phone: 617-868-3900
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    2. White, Halbert, 1980. "Nonlinear Regression on Cross-Section Data," Econometrica, Econometric Society, vol. 48(3), pages 721-46, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0014. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.