IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Parameter Estimation in Semi-Linear Models Using a Maximal Invariant Likelihood Function

Listed author(s):
  • Jahar L. Bhowmik


  • Maxwell L. King


In this paper, we consider the problem of estimation of semi-linear regression models. Using invariance arguments, Bhowmik and King (2001) have derived the probability density functions of the maximal invariant statistic for the nonlinear component of these models. Using these density functions as likelihood functions allows us to estimate these models in a two-step process. First the nonlinear component parameters are estimated by maximising the maximal invariant likelihood function. Then the nonlinear component, with the parameter values replaced by estimates, is treated as a regressor and ordinary least squares is used to estimate the remaining parameters. We report the results of a simulation study conducted to compare the accuracy of this approach with full maximum likelihood estimation. We find maximising the maximal invariant likelihood function typically results in less biased and lower variance estimates than those from full maximum likelihood.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 18/05.

in new window

Length: 29 pages
Date of creation: 2005
Handle: RePEc:msh:ebswps:2005-18
Contact details of provider: Postal:
PO Box 11E, Monash University, Victoria 3800, Australia

Phone: +61 3 99052489
Fax: +61 3 99055474
Web page:

More information through EDIRC

Order Information: Web: Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. King, Maxwell L., 1983. "Testing for autoregressive against moving average errors in the linear regression model," Journal of Econometrics, Elsevier, vol. 21(1), pages 35-51, January.
  2. Laskar, M.R. & King, M.L., 1998. "Modified Likelihood and Related Methods for Handling Nuisance Parameters in the Linear Regression Model," Monash Econometrics and Business Statistics Working Papers 5/98, Monash University, Department of Econometrics and Business Statistics.
  3. Ara, I. & King, M.L., 1995. "Marginal Likelihood Based Tests of a Subvector of the Parameter Vector of Linear Regression Disturbances," Monash Econometrics and Business Statistics Working Papers 12/95, Monash University, Department of Econometrics and Business Statistics.
  4. Rahman, Shahidur & King, Maxwell L., 1997. "Marginal-likelihood score-based tests of regression disturbances in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 82(1), pages 81-106.
  5. Konstas, Panos & Khouja, Mohamad W, 1969. "The Keynesian Demand-for-Money Function: Another Look and Some Additional Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 1(4), pages 765-777, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2005-18. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.