IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/1998-5.html
   My bibliography  Save this paper

Modified Likelihood and Related Methods for Handling Nuisance Parameters in the Linear Regression Model

Author

Listed:
  • Laskar, M.R.
  • King, M.L.

Abstract

In this paper, different approaches to dealing with nuisance parameters in the likelihood based inference are presented and illustrated by reference to the linear regression model with nonspherical errors. The estimator of the error variance using each of the approaches is also derived for the linear regression model with spherical erors. We observe that many of these estimators are unbiased. A theoretical comparison of the likelihood functions is reported and we note that some of them are equivalent.

Suggested Citation

  • Laskar, M.R. & King, M.L., 1998. "Modified Likelihood and Related Methods for Handling Nuisance Parameters in the Linear Regression Model," Monash Econometrics and Business Statistics Working Papers 5/98, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:1998-5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    2. Jahar L. Bhowmik & Maxwell L. King, 2005. "Parameter Estimation in Semi-Linear Models Using a Maximal Invariant Likelihood Function," Monash Econometrics and Business Statistics Working Papers 18/05, Monash University, Department of Econometrics and Business Statistics.
    3. Jahar Bhowmik & Maxwell King, 2007. "Maximal invariant likelihood based testing of semi-linear models," Statistical Papers, Springer, vol. 48(3), pages 357-383, September.

    More about this item

    Keywords

    MAXIMUM LIKELIHOOD ; MODELS;

    JEL classification:

    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:1998-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.