IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/1999-1.html
   My bibliography  Save this paper

Forecasting Models and Prediction Intervals for the Multiplicative Holt-Winters Method

Author

Listed:
  • Koehler, A.B.
  • Snyder, R.D.
  • Ord, J.K.

Abstract

A new class of models for data showing trend and multiplicative seasonality is presented. The models allow the forecast error variance to depend on the trend and/ or the seasonality. It can be shown that each of these models has the same updating equations and forecast functions as the multiplicative Holt-Winters method, regardless of whether the error variation in the model is constant or not. While the point forecasts from the different models are identical, the prediction intervals will, of course, depend on the structure of the error variance and so it is essential to be able to choose the most appropriate form of model. Two methods for making this choice are presented and examined by simulation.

Suggested Citation

  • Koehler, A.B. & Snyder, R.D. & Ord, J.K., 1999. "Forecasting Models and Prediction Intervals for the Multiplicative Holt-Winters Method," Monash Econometrics and Business Statistics Working Papers 1/99, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:1999-1
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/1999/wp1-99.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Archibald, Blyth C., 1990. "Parameter space of the Holt-winters' model," International Journal of Forecasting, Elsevier, vol. 6(2), pages 199-209, July.
    3. Ahn, Sung K. & Reinsel, Gregory C., 1994. "Estimation of partially nonstationary vector autoregressive models with seasonal behavior," Journal of Econometrics, Elsevier, vol. 62(2), pages 317-350, June.
    4. Ord, J.K. & Koehler, A. & Snyder, R.D., 1995. "Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models," Monash Econometrics and Business Statistics Working Papers 4/95, Monash University, Department of Econometrics and Business Statistics.
    5. Chatfield, Chris & Yar, Mohammed, 1991. "Prediction intervals for multiplicative Holt-Winters," International Journal of Forecasting, Elsevier, vol. 7(1), pages 31-37, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Bermudez, J.D. & Segura, J.V. & Vercher, E., 2006. "A decision support system methodology for forecasting of time series based on soft computing," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 177-191, November.
    4. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    5. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    6. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.
    7. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    8. repec:jss:jstsof:27:i03 is not listed on IDEAS
    9. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    10. Hyndman, Rob J. & Billah, Baki, 2003. "Unmasking the Theta method," International Journal of Forecasting, Elsevier, vol. 19(2), pages 287-290.
    11. Ralph D. Snyder, 2004. "Exponential Smoothing: A Prediction Error Decomposition Principle," Monash Econometrics and Business Statistics Working Papers 15/04, Monash University, Department of Econometrics and Business Statistics.
    12. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901, July.
    13. Rob Hyndman & Muhammad Akram & Blyth Archibald, 2008. "The admissible parameter space for exponential smoothing models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 407-426, June.
    14. Snyder, Ralph D. & Koehler, Anne B. & Hyndman, Rob J. & Ord, J. Keith, 2004. "Exponential smoothing models: Means and variances for lead-time demand," European Journal of Operational Research, Elsevier, vol. 158(2), pages 444-455, October.
    15. Bianchi, Lisa & Jarrett, Jeffrey & Choudary Hanumara, R., 1998. "Improving forecasting for telemarketing centers by ARIMA modeling with intervention," International Journal of Forecasting, Elsevier, vol. 14(4), pages 497-504, December.
    16. Snyder, Ralph D. & Koehler, Anne B. & Ord, J. Keith, 2002. "Forecasting for inventory control with exponential smoothing," International Journal of Forecasting, Elsevier, vol. 18(1), pages 5-18.
    17. Archibald, Blyth C. & Koehler, Anne B., 2003. "Normalization of seasonal factors in Winters' methods," International Journal of Forecasting, Elsevier, vol. 19(1), pages 143-148.
    18. So, Mike K.P. & Chung, Ray S.W., 2014. "Dynamic seasonality in time series," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 212-226.
    19. Hyndman, R.J. & Koehler, A.B. & Ord, J.K. & Snyder, R.D., 2001. "Prediction Intervals for Exponential Smoothing State Space Models," Monash Econometrics and Business Statistics Working Papers 11/01, Monash University, Department of Econometrics and Business Statistics.
    20. Ralph D. Snyder & Anne B. Koehler & Rob J. Hyndman & J. Keith Ord, 2002. "Exponential Smoothing for Inventory Control: Means and Variances of Lead-Time Demand," Monash Econometrics and Business Statistics Working Papers 3/02, Monash University, Department of Econometrics and Business Statistics.
    21. Ralph D Snyder, 2005. "A Pedant's Approach to Exponential Smoothing," Monash Econometrics and Business Statistics Working Papers 5/05, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Keywords

    Forecasting; Prediction Intervals; Multiplicative Holt-Winters;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:1999-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.