IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/09034.html
   My bibliography  Save this paper

A Risk Management Approach for Portfolio Insurance Strategies

Author

Abstract

Controlling and managing potential losses is one of the main objectives of the Risk Management. Following Ben Ameur and Prigent (2007) and Chen et al. (2008), and extending the first results by Hamidi et al. (2009) when adopting a risk management approach for defining insurance portfolio strategies, we analyze and illustrate a specific dynamic portfolio insurance strategy depending on the Value-at-Risk level of the covered portfolio on the French stock market. This dynamic approach is derived from the traditional and popular portfolio insurance strategy (Cf. Black and Jones, 1987 ; Black and Perold, 1992): the so-called "Constant Proportion Portfolio Insurance" (CPPI). However, financial results produced by this strategy crucially depend upon the leverage - called the multiple - likely guaranteeing a predetermined floor value whatever the plausible market evolutions. In other words, the unconditional multiple is defined once and for all in the traditional setting. The aim of this article is to further examine an alternative to the standard CPPI method, based on the determination of a conditional multiple. In this time-varying framework, the multiple is conditionally determined in order to remain the risk exposure constant, even if it also depends upon market conditions. Furthermore, we propose to define the multiple as a function of an extended Dynamic AutoRegressive Quantile model of the Value-at-Risk (DARQ-VaR). Using a French daily stock database (CAC 40) and individual stocks in the period 1998-2008), we present the main performance and risk results of the proposed Dynamic Proportion Portfolio Insurance strategy, first on real market data and secondly on artificial bootstrapped and surrogate data. Our main conclusion strengthens the previous ones : the conditional Dynamic Strategy with Constant-risk exposure dominates most of the time the traditional Constant-asset exposure unconditional strategies

Suggested Citation

  • Benjamin Hamidi & Bertrand Maillet & Jean-Luc Prigent, 2009. "A Risk Management Approach for Portfolio Insurance Strategies," Documents de travail du Centre d'Economie de la Sorbonne 09034, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:09034
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2009/09034.pdf
    Download Restriction: no

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    2. Zieling, Daniel & Mahayni, Antje & Balder, Sven, 2014. "Performance evaluation of optimized portfolio insurance strategies," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 212-225.
    3. Ben Ameur, H. & Prigent, J.L., 2014. "Portfolio insurance: Gap risk under conditional multiples," European Journal of Operational Research, Elsevier, vol. 236(1), pages 238-253.
    4. repec:eee:ejores:v:269:y:2018:i:1:p:363-381 is not listed on IDEAS

    More about this item

    Keywords

    CPPI; portfolio insurance; VaR; CAViaR; quantile regression; dynamic quantile model;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:09034. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label). General contact details of provider: http://edirc.repec.org/data/cenp1fr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.