IDEAS home Printed from https://ideas.repec.org/p/mcd/mcddps/2010_08.html
   My bibliography  Save this paper

An out-of-sample test for nonlinearity in financial time series: An empirical application

Author

Abstract

This paper employs a local information, nearest neighbour forecasting methodology to test for evidence of nonlinearity in financial time series. Evidence from well-known data generating process are provided and compared with returns from the Athens stock exchange given the in-sample evidence of nonlinear dynamics that has appeared in the literature. Nearest neighbour forecasts fail to produce more accurate forecasts from a simple AR model. This does not substantiate the presence of in-sample nonlinearity in the series.

Suggested Citation

  • Theodore Panagiotidis, 2010. "An out-of-sample test for nonlinearity in financial time series: An empirical application," Discussion Paper Series 2010_08, Department of Economics, University of Macedonia, revised Jun 2010.
  • Handle: RePEc:mcd:mcddps:2010_08
    as

    Download full text from publisher

    File URL: http://aphrodite.uom.gr/econwp/pdf/dp0810.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. LeBaron, Blake, 1992. "Forecast Improvements Using a Volatility Index," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 137-149, Suppl. De.
    2. Theodore Panagiotidis, 2010. "Market efficiency and the Euro: the case of the Athens stock exchange," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 37(3), pages 237-251, July.
    3. Amos Golan & Jeffrey M. Perloff, 2004. "Superior Forecasts of the U.S. Unemployment Rate Using a Nonparametric Method," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 433-438, February.
    4. Jaditz Ted & Riddick Leigh A., 2000. "Time-Series Near-Neighbor Regression," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(1), pages 1-11, April.
    5. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    6. Jaditz, Ted & Sayers, Chera L, 1998. "Out-of-Sample Forecast Performance as a Test for Nonlinearity in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 110-117, January.
    7. Mizrach, B, 1992. "Multivariate Nearest-Neighbor Forecasts of EMS Exchange Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 151-163, Suppl. De.
    8. Granger Clive W.J., 2008. "Non-Linear Models: Where Do We Go Next - Time Varying Parameter Models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-11, September.
    9. Jaditz, Ted & Riddick, Leigh A. & Sayers, Chera L., 1998. "MULTIVARIATE NONLINEAR FORECASTING Using Financial Information to Forecast the Real Sector," Macroeconomic Dynamics, Cambridge University Press, vol. 2(3), pages 369-382, September.
    10. David Chappell & Theodore Panagiotidis, 2005. "Using the correlation dimension to detect non-linear dynamics: Evidence from the Athens Stock Exchange," Econometrics 0504005, University Library of Munich, Germany.
    11. Fernandez-Rodriguez, Fernando & Sosvilla-Rivero, Simon, 1998. "Testing nonlinear forecastability in time series: Theory and evidence from the EMS," Economics Letters, Elsevier, vol. 59(1), pages 49-63, April.
    12. Agnon, Yehuda & Golan, Amos & Shearer, Matthew, 1999. "Nonparametric, nonlinear, short-term forecasting: theory and evidence for nonlinearities in the commodity markets," Economics Letters, Elsevier, vol. 65(3), pages 293-299, December.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "Some thoughts on accurate characterization of stock market indexes trends in conditions of nonlinear capital flows during electronic trading at stock exchanges in global capital markets," MPRA Paper 49921, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    2. Olmedo, Elena, 2011. "Is there chaos in the Spanish labour market?," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1045-1053.
    3. Jaditz Ted & Riddick Leigh A., 2000. "Time-Series Near-Neighbor Regression," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(1), pages 1-11, April.
    4. Theodore Panagiotidis, 2010. "Market efficiency and the Euro: the case of the Athens stock exchange," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 37(3), pages 237-251, July.
    5. Catherine Kyrtsou & Walter C. Labys & Michel Terraza, 2004. "Noisy chaotic dynamics in commodity markets," Empirical Economics, Springer, vol. 29(3), pages 489-502, September.
    6. Nikolopoulos, Konstantinos I. & Babai, M. Zied & Bozos, Konstantinos, 2016. "Forecasting supply chain sporadic demand with nearest neighbor approaches," International Journal of Production Economics, Elsevier, vol. 177(C), pages 139-148.
    7. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    8. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    9. Baur, Dirk & Jung, Robert C., 2006. "Return and volatility linkages between the US and the German stock market," Journal of International Money and Finance, Elsevier, vol. 25(4), pages 598-613, June.
    10. Bachar Fakhry & Christian Richter, 2018. "Does the Federal Constitutional Court Ruling Mean the German Financial Market is Efficient?," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 4(2), pages 111-125.
    11. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020. "Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model," Energy Economics, Elsevier, vol. 88(C).
    12. Theodore Panagiotidis, 2002. "Testing the assumption of Linearity," Economics Bulletin, AccessEcon, vol. 3(29), pages 1-9.
    13. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    14. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    15. Urquhart, Andrew & Hudson, Robert, 2013. "Efficient or adaptive markets? Evidence from major stock markets using very long run historic data," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 130-142.
    16. Semei Coronado-Ram'irez & Pedro Celso-Arellano & Omar Rojas, 2014. "Adaptive Market Efficiency of Agricultural Commodity Futures Contracts," Papers 1412.8017, arXiv.org, revised Mar 2015.
    17. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    18. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    19. F. FernAndez-RodrIguez & S. Sosvilla-Rivero & J. Andrada-FElix, 2003. "Technical analysis in foreign exchange markets: evidence from the EMS," Applied Financial Economics, Taylor & Francis Journals, vol. 13(2), pages 113-122.
    20. Cai Zongwu & Chen Linna & Fang Ying, 2012. "A New Forecasting Model for USD/CNY Exchange Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.

    More about this item

    Keywords

    nearest neighbour; nonlinearity;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mcd:mcddps:2010_08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theodore Panagiotidis or Anastasia Litina (email available below). General contact details of provider: http://www.uom.gr/index.php?tmima=3 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.