IDEAS home Printed from
   My bibliography  Save this paper

A Robust Hausman-Taylor Estimator



This paper suggests a robust Hausman and Taylor (1981) estimator, here-after HT, that deals with the possible presence of outliers. This entails two modifications of the classical HT estimator. The first modification uses the Bramati and Croux (2007) robust Within MS estimator instead of the Within estimator in the first stage of the HT estimator. The second modification uses the robust Wagenvoort and Waldmann (2002) two stage generalized MS estimator instead of the 2SLS estimator in the second step of the HT estimator. Monte Carlo simulations show that, in the presence of vertical outliers or bad leverage points, the robust HT estimator yields large gains in MSE as compared to its classical Hausman-Taylor counterpart. We illustrate this robust version of the Hausman-Taylor estimator using an empirical application. Key Words: Bad leverage points, Hausman-Taylor, panel data, two stage generalized MS estimator, vertical outliers. JEL No. C23, C26

Suggested Citation

  • Badi H. Baltagi & Georges Bresson, 2012. "A Robust Hausman-Taylor Estimator," Center for Policy Research Working Papers 140, Center for Policy Research, Maxwell School, Syracuse University.
  • Handle: RePEc:max:cprwps:140

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    2. Peter Egger & Michael Pfaffermayr, 2004. "Distance, trade and FDI: a Hausman-Taylor SUR approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 227-246.
    3. Vincenzo Verardi & Christophe Croux, 2009. "Robust regression in Stata," Stata Journal, StataCorp LP, vol. 9(3), pages 439-453, September.
    4. Catherine Dehon & Marjorie Gassner & Vincenzo Verardi, 2009. "Beware of 'Good' Outliers and Overoptimistic Conclusions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 437-452, June.
    5. Wagenvoort, Rien & Waldmann, Robert, 2002. "On B-robust instrumental variable estimation of the linear model with panel data," Journal of Econometrics, Elsevier, vol. 106(2), pages 297-324, February.
    6. Cornwell, Christopher & Rupert, Peter, 1988. "Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variables Estimators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(2), pages 149-155, April.
    7. Cizek, Pavel, 2008. "Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 687-696, June.
    8. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    9. Breusch, Trevor S & Mizon, Grayham E & Schmidt, Peter, 1989. "Efficient Estimation Using Panel Data," Econometrica, Econometric Society, vol. 57(3), pages 695-700, May.
    10. Hinloopen, Jeroen & Wagenvoort, Rien, 1997. "On the computation and efficiency of a HBP-GM estimator some simulation results," Computational Statistics & Data Analysis, Elsevier, vol. 25(1), pages 1-15, July.
    11. Yongcheol Shin & Laura Serlenga, 2007. "Gravity models of intra-EU trade: application of the CCEP-HT estimation in heterogeneous panels with unobserved common time-specific factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 361-381.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2018. "Robust linear static panel data models using ε-contamination," Journal of Econometrics, Elsevier, vol. 202(1), pages 108-123.
    2. repec:eee:csdana:v:113:y:2017:i:c:p:398-423 is not listed on IDEAS
    3. Harding, Matthew & Lamarche, Carlos, 2014. "A Hausman–Taylor instrumental variable approach to the penalized estimation of quantile panel models," Economics Letters, Elsevier, vol. 124(2), pages 176-179.
    4. Aquaro, M. & Čížek, P., 2013. "One-step robust estimation of fixed-effects panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 536-548.

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:max:cprwps:140. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Margaret Austin) or (Candi Patterson) or (Katrina Wingle). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.