IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v103y2008mjunep687-696.html
   My bibliography  Save this article

Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models

Author

Listed:
  • Cizek, Pavel

Abstract

The binary-choice regression models such as probit and logit are used to describe the effect of explanatory variables on a binary response vari- able. Typically estimated by the maximum likelihood method, estimates are very sensitive to deviations from a model, such as heteroscedastic- ity and data contamination. At the same time, the traditional robust (high-breakdown point) methods such as the maximum trimmed like- lihood are not applicable since, by trimming observations, they induce the separation of data and non-identification of parameter estimates. To provide a robust estimation method for binary-choice regression, we con- sider a maximum symmetrically-trimmed likelihood estimator (MSTLE) and design a parameter-free adaptive procedure for choosing the amount of trimming. The proposed adaptive MSTLE preserves the robust prop- erties of the original MSTLE, significantly improves the infinite-sample behavior of MSTLE, and additionally, ensures asymptotic efficiency of the estimator under no contamination. The results concerning the trim- ming identification, robust properties, and asymptotic distribution of the proposed method are accompanied by simulation experiments and an application documenting the infinite-sample behavior of some existing and the proposed methods.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Cizek, Pavel, 2008. "Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 687-696, June.
  • Handle: RePEc:bes:jnlasa:v:103:y:2008:m:june:p:687-696
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2008/00000103/00000482/art00026
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christmann, Andreas & Rousseeuw, Peter J., 2001. "Measuring overlap in binary regression," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 65-75, July.
    2. Hadi, Ali S. & Luceno, Alberto, 1997. "Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 25(3), pages 251-272, August.
    3. Croux, Christophe & Flandre, Cécile & Haesbroeck, Gentiane, 2002. "The breakdown behavior of the maximum likelihood estimator in the logistic regression model," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 377-386, December.
    4. Peter Hall & Brett Presnell, 1999. "Biased Bootstrap Methods for Reducing the Effects of Contamination," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 661-680.
    5. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    6. Marc G. Genton & André Lucas, 2003. "Comprehensive definitions of breakdown points for independent and dependent observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 81-94.
    7. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
    8. Croux, Christophe & Haesbroeck, Gentiane, 2003. "Implementing the Bianco and Yohai estimator for logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 273-295, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badi H. Baltagi & Georges Bresson, 2012. "A Robust Hausman-Taylor Estimator," Center for Policy Research Working Papers 140, Center for Policy Research, Maxwell School, Syracuse University.
    2. Aquaro, M. & Čížek, P., 2013. "One-step robust estimation of fixed-effects panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 536-548.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:103:y:2008:m:june:p:687-696. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.