Trimmed LASSO regression estimator for binary response data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2019.108679
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Hadi, Ali S. & Luceno, Alberto, 1997. "Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 25(3), pages 251-272, August.
- N. Neykov & P. Filzmoser & P. Neytchev, 2014.
"Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator,"
Statistical Papers, Springer, vol. 55(1), pages 187-207, February.
- N. Neykov & P. Filzmoser & P. Neytchev, 2014. "Erratum to: Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator," Statistical Papers, Springer, vol. 55(3), pages 917-918, August.
- Croux, Christophe & Flandre, Cécile & Haesbroeck, Gentiane, 2002. "The breakdown behavior of the maximum likelihood estimator in the logistic regression model," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 377-386, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- G. S. Monti & P. Filzmoser, 2022. "Robust logistic zero-sum regression for microbiome compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 301-324, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cizek, Pavel, 2008.
"Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models,"
Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 687-696, June.
- Cizek, P., 2007. "Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models," Other publications TiSEM 09af7c4a-65bd-4684-855b-e, Tilburg University, School of Economics and Management.
- Cizek, P., 2007. "Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models," Discussion Paper 2007-12, Tilburg University, Center for Economic Research.
- Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.
- Čížek, Pavel, 2008.
"General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models,"
Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
- Cizek, P., 2004. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models," Discussion Paper 2004-130, Tilburg University, Center for Economic Research.
- Cizek, P., 2004. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models," Other publications TiSEM 646b48cc-6bdc-4b93-bc20-7, Tilburg University, School of Economics and Management.
- Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
- repec:cep:stiecm:/2014/572 is not listed on IDEAS
- Lorenzo Camponovo & Taisuke Otsu, 2015.
"Robustness of Bootstrap in Instrumental Variable Regression,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 352-393, March.
- Lorenzo Camponovo & Taisuke Otsu, 2011. "Robustness of Bootstrap in Instrumental Variable Regression," Cowles Foundation Discussion Papers 1796, Cowles Foundation for Research in Economics, Yale University.
- Camponovo, Lorenzo & Otsu, Taisuke, 2014. "Robustness of bootstrap in instrumental variable regression," LSE Research Online Documents on Economics 58185, London School of Economics and Political Science, LSE Library.
- Lorenzo Camponovo & Taisuke Otsu, 2014. "Robustness of bootstrap in instrumental variable regression," STICERD - Econometrics Paper Series 572, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Camponovo, Lorenzo & Otsu, Taisuke, 2015. "Robustness of bootstrap in instrumental variable regression," LSE Research Online Documents on Economics 60185, London School of Economics and Political Science, LSE Library.
- Chalabi, Yohan / Y. & Wuertz, Diethelm, 2010. "Weighted trimmed likelihood estimator for GARCH models," MPRA Paper 26536, University Library of Munich, Germany.
- Cizek, P., 2005.
"Trimmed Likelihood-based Estimation in Binary Regression Models,"
Other publications TiSEM
8b789cab-97b8-451f-b37c-9, Tilburg University, School of Economics and Management.
- Cizek, P., 2005. "Trimmed Likelihood-based Estimation in Binary Regression Models," Discussion Paper 2005-108, Tilburg University, Center for Economic Research.
- Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021.
"Outliers in Semi-Parametric Estimation of Treatment Effects,"
Econometrics, MDPI, vol. 9(2), pages 1-32, April.
- Darwin Ugarte Ontiveros & Gustavo Canavire-Bacarreza & Luis Castro Pe�arrieta, 2017. "Outliers in semi-parametric Estimation of Treatment Effects," Documentos de Trabajo de Valor Público 15810, Universidad EAFIT.
- Darwin Ugarte Ontiveros & Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta, 2017. "Outliers in semi-parametric Estimation of Treatment Effects," Development Research Working Paper Series 06/2017, Institute for Advanced Development Studies.
- Brenton R. Clarke & Andrew Grose, 2023. "A further study comparing forward search multivariate outlier methods including ATLA with an application to clustering," Statistical Papers, Springer, vol. 64(2), pages 395-420, April.
- Ning Li & Hu Yang, 2021. "Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models," Statistical Papers, Springer, vol. 62(2), pages 661-680, April.
- Čίžek, Pavel & Härdle, Wolfgang Karl, 2006. "Robust econometrics," SFB 649 Discussion Papers 2006-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Luca Insolia & Ana Kenney & Francesca Chiaromonte & Giovanni Felici, 2022. "Simultaneous feature selection and outlier detection with optimality guarantees," Biometrics, The International Biometric Society, vol. 78(4), pages 1592-1603, December.
- Li Liu & Hao Wang & Yanyan Liu & Jian Huang, 2021. "Model pursuit and variable selection in the additive accelerated failure time model," Statistical Papers, Springer, vol. 62(6), pages 2627-2659, December.
- Ana M. Bianco & Graciela Boente & Gonzalo Chebi, 2022. "Penalized robust estimators in sparse logistic regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 563-594, September.
- Adriano Zanin Zambom & Gregory J. Matthews, 2021. "Sure independence screening in the presence of missing data," Statistical Papers, Springer, vol. 62(2), pages 817-845, April.
- Yunlu Jiang, 2015. "Robust estimation in partially linear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2497-2508, November.
- A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
- repec:hum:wpaper:sfb649dp2006-050 is not listed on IDEAS
- Cheng, Tsung-Chi, 2005. "Robust regression diagnostics with data transformations," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 875-891, June.
- Cheng, Tsung-Chi, 2011. "Robust diagnostics for the heteroscedastic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1845-1866, April.
- Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:159:y:2020:i:c:s0167715219303256. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.