IDEAS home Printed from https://ideas.repec.org/p/lvl/lacicr/1329.html
   My bibliography  Save this paper

The Peer Performance of Hedge Funds

Author

Listed:
  • David Ardia
  • Kris Boudt

Abstract

An essential component in the analysis of (hedge) fund returns is to measure its performance with respect to the group of peer funds. Through the analysis of risk-adjusted return percentiles an answer is given to the question how many funds are out-performed by the focal fund. In case all funds perform equally well, this approach will lead a random number between zero and one, depending on how lucky the fund is. We use the false discovery rate approach to construct relative performance ratios that account for the uncertainty in estimating the performance differential of two funds. Our application is on hedge funds, which leads us to develop a test for equality of the modified Sharpe ratio of two funds. The effectiveness of the method is illustrated with a Monte Carlo study and an empirical study is performed on the Hedge Fund Research database.

Suggested Citation

  • David Ardia & Kris Boudt, 2013. "The Peer Performance of Hedge Funds," Cahiers de recherche 1329, CIRPEE.
  • Handle: RePEc:lvl:lacicr:1329
    as

    Download full text from publisher

    File URL: http://www.cirpee.org/fileadmin/documents/Cahiers_2013/CIRPEE13-29.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    2. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    3. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    4. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    5. Carhart, Mark M, 1997. " On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    6. Scott, Robert C & Horvath, Philip A, 1980. " On the Direction of Preference for Moments of Higher Order Than the Variance," Journal of Finance, American Finance Association, vol. 35(4), pages 915-919, September.
    7. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    8. Treynor, Jack L & Black, Fischer, 1973. "How to Use Security Analysis to Improve Portfolio Selection," The Journal of Business, University of Chicago Press, vol. 46(1), pages 66-86, January.
    9. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    equal-performance ratio; false discovery rate; hedge fund; modified Sharpe ratio; out-performance ratio; peer group; performance measurement;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:lacicr:1329. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Manuel Paradis). General contact details of provider: http://edirc.repec.org/data/cirpeca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.