IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Estimation with Numerical Integration on Sparse Grids

  • Heiss, Florian
  • Winschel, Viktor

For the estimation of many econometric models, integrals without analytical solutions have to be evaluated. Examples include limited dependent variables and nonlinear panel data models. In the case of one-dimensional integrals, Gaussian quadrature is known to work efficiently for a large class of problems. In higher dimensions, similar approaches discussed in the literature are either very specific and hard to implement or suffer from exponentially rising computational costs in the number of dimensions - a problem known as the "curse of dimensionality" of numerical integration. We propose a strategy that shares the advantages of Gaussian quadrature methods, is very general and easily implemented, and does not suffer from the curse of dimensionality. Monte Carlo experiments for the random parameters logit model indicate the superior performance of the proposed method over simulation techniques.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of Munich, Department of Economics in its series Discussion Papers in Economics with number 916.

in new window

Date of creation: Apr 2006
Date of revision:
Handle: RePEc:lmu:muenec:916
Contact details of provider: Postal: Ludwigstr. 28, 80539 Munich, Germany
Phone: +49-(0)89-2180-3405
Fax: +49-(0)89-2180-3510
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Vassilis A. Hajivassiliou & Paul A. Ruud, 1993. "Classical Estimation Methods for LDV Models Using Simulation," Cowles Foundation Discussion Papers 1051, Cowles Foundation for Research in Economics, Yale University.
  2. John F. Geweke, 1995. "Monte Carlo simulation and numerical integration," Staff Report 192, Federal Reserve Bank of Minneapolis.
  3. Kenneth Train, 2003. "Discrete Choice Methods with Simulation," Online economics textbooks, SUNY-Oswego, Department of Economics, number emetr2.
  4. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
  5. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
  6. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
  7. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
  8. Tauchen, George & Hussey, Robert, 1991. "Quadrature-Based Methods for Obtaining Approximate Solutions to Nonlinear Asset Pricing Models," Econometrica, Econometric Society, vol. 59(2), pages 371-96, March.
  9. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
  10. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-64, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lmu:muenec:916. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tamilla Benkelberg)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.