IDEAS home Printed from https://ideas.repec.org/p/jrp/jrpwrp/2013-030.html
   My bibliography  Save this paper

One Swallow Doesn't Make a Summer - A Note

Author

Listed:
  • Mitesh Kataria

    (Max Planck Institute of Economics, Strategic Interaction Group,Jena)

Abstract

Maniadis et al. (2013) present a theoretical framework that aims at providing insights into the mechanics of proper inference. They suggest that a decision about whether to call an experimental finding noteworthy, or deserving of great attention, should be based on the calculated post-study probability. Although I in large agree with most points in Maniadis et al. (2013), this note raises some important caveats.

Suggested Citation

  • Mitesh Kataria, 2013. "One Swallow Doesn't Make a Summer - A Note," Jena Economics Research Papers 2013-030, Friedrich-Schiller-University Jena.
  • Handle: RePEc:jrp:jrpwrp:2013-030
    as

    Download full text from publisher

    File URL: https://oweb.b67.uni-jena.de/Papers/jerp2013/wp_2013_030.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McCloskey, Donald N, 1985. "The Loss Function Has Been Mislaid: The Rhetoric of Significance Tests," American Economic Review, American Economic Association, vol. 75(2), pages 201-205, May.
    2. Zacharias Maniadis & Fabio Tufano & John A. List, 2014. "One Swallow Doesn't Make a Summer: New Evidence on Anchoring Effects," American Economic Review, American Economic Association, vol. 104(1), pages 277-290, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    2. repec:ejw:journl:v:11:y:2014:i:1:p:4-10 is not listed on IDEAS
    3. Marc Poitras, 2004. "The Impact of Macroeconomic Announcements on Stock Prices: In Search of State Dependence," Southern Economic Journal, John Wiley & Sons, vol. 70(3), pages 549-565, January.
    4. Meub, Lukas & Proeger, Till, 2016. "Are groups 'less behavioral'? The case of anchoring," University of Göttingen Working Papers in Economics 188 [rev.], University of Goettingen, Department of Economics.
    5. Klos, Alexander & Rottke, Simon, 2013. "Saving and Consumption When Children Move Out," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79786, Verein für Socialpolitik / German Economic Association.
    6. Andrews, Donald W K, 1989. "Power in Econometric Applications," Econometrica, Econometric Society, vol. 57(5), pages 1059-1090, September.
    7. Buser, Thomas & Ranehill, Eva & van Veldhuizen, Roel, 2021. "Gender differences in willingness to compete: The role of public observability," Journal of Economic Psychology, Elsevier, vol. 83(C).
    8. Bagues, Manuel & Campa, Pamela, 2021. "Can gender quotas in candidate lists empower women? Evidence from a regression discontinuity design," Journal of Public Economics, Elsevier, vol. 194(C).
    9. Aravena, Claudia & Hutchinson, W. George & Carlsson, Fredrik & Matthews, David I, 2015. "Testing preference formation in learning design contingent valuation (LDCV) using advanced information and repetitivetreatments," Working Papers in Economics 619, University of Gothenburg, Department of Economics.
    10. Lavergne, Pascal, 2015. "Assessing the Approximate Validity of Moment Restrictions," TSE Working Papers 15-562, Toulouse School of Economics (TSE), revised May 2020.
    11. Omar Al-Ubaydli & John List & Claire Mackevicius & Min Sok Lee & Dana Suskind, 2019. "How Can Experiments Play a Greater Role in Public Policy? 12 Proposals from an Economic Model of Scaling," Artefactual Field Experiments 00679, The Field Experiments Website.
    12. Michael L. Anderson & Fangwen Lu, 2017. "Learning to Manage and Managing to Learn: The Effects of Student Leadership Service," Management Science, INFORMS, vol. 63(10), pages 3246-3261, October.
    13. Omar Al-Ubaydli & John A. List, 2019. "How natural field experiments have enhanced our understanding of unemployment," Nature Human Behaviour, Nature, vol. 3(1), pages 33-39, January.
    14. Carlos Alós-Ferrer & Georg D. Granic, 2023. "Does choice change preferences? An incentivized test of the mere choice effect," Experimental Economics, Springer;Economic Science Association, vol. 26(3), pages 499-521, July.
    15. Philipp Doerrenberg & Christoph Feldhaus & Felix Kölle & Axel Ockenfels, 2024. "Groups Are More Libertarian than Individuals," CESifo Working Paper Series 11575, CESifo.
    16. Melesse, Mequanint B. & Cecchi, Francesco, 2017. "Does Market Experience Attenuate Risk Aversion? Evidence from Landed Farm Households in Ethiopia," World Development, Elsevier, vol. 98(C), pages 447-466.
    17. Stanley, T. D. & Doucouliagos, Chris, 2019. "Practical Significance, Meta-Analysis and the Credibility of Economics," IZA Discussion Papers 12458, Institute of Labor Economics (IZA).
    18. Jon P. Nelson, 2008. "Reply To Siegel Et Al.: Alcohol Advertising In Magazines And Disproportionate Exposure," Contemporary Economic Policy, Western Economic Association International, vol. 26(3), pages 493-504, July.
    19. Matteo M. Galizzi & Daniel Navarro-Martinez, 2019. "On the External Validity of Social Preference Games: A Systematic Lab-Field Study," Management Science, INFORMS, vol. 65(3), pages 976-1002, March.
    20. Omar Al-Ubaydli & John A. List & Dana L. Suskind, 2017. "What Can We Learn from Experiments? Understanding the Threats to the Scalability of Experimental Results," American Economic Review, American Economic Association, vol. 107(5), pages 282-286, May.
    21. Ziliak, Stephen T. & McCloskey, Deirdre N., 2004. "Size matters: the standard error of regressions in the American Economic Review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 33(5), pages 527-546, November.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jrp:jrpwrp:2013-030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Markus Pasche (email available below). General contact details of provider: http://www.jenecon.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.