IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

The Wooldridge Method for the Initial Values Problem Is Simple: What About Performance?

  • Akay, Alpaslan

    ()

    (University of Gothenburg)

The Wooldridge method is based on a simple and novel strategy to deal with the initial values problem in the nonlinear dynamic random-effects panel data models. This characteristic of the method makes it very attractive in empirical applications. However, its finite sample performance is not known as of yet. In this paper we investigate the performance of this method in comparison with an ideal case in which the initial values are known constants, the worst scenario based on exogenous initial values assumption, and the Heckman's reduced-form approximation method which is widely used in the literature. The dynamic random-effects probit and tobit (type1) models are used as the working examples. Various designs of Monte Carlo Experiments with balanced and unbalanced panel data sets, and also two full length empirical applications are provided. The results suggest that the Wooldridge method works very well for the panels with moderately long durations (longer than 5-8 periods). In short panels Heckman's reduced-form approximation is suggested (shorter than 5 periods). It is also found that all methods perform equally well for panels of long durations (longer than 10-15 periods).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://ftp.iza.org/dp3943.pdf
Download Restriction: no

Paper provided by Institute for the Study of Labor (IZA) in its series IZA Discussion Papers with number 3943.

as
in new window

Length: 42 pages
Date of creation: Jan 2009
Date of revision:
Handle: RePEc:iza:izadps:dp3943
Contact details of provider: Postal:
IZA, P.O. Box 7240, D-53072 Bonn, Germany

Phone: +49 228 3894 223
Fax: +49 228 3894 180
Web page: http://www.iza.org

Order Information: Postal: IZA, Margard Ody, P.O. Box 7240, D-53072 Bonn, Germany
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-64, May.
  2. Arellano, M & Carrasco, R, 1996. "Binary Choice Panel Data Models with Predetermined Variables," Papers 9618, Centro de Estudios Monetarios Y Financieros-.
  3. Gourieroux, Christian & Monfort, Alain, 1993. "Simulation-based inference : A survey with special reference to panel data models," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 5-33, September.
  4. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54.
  5. Edin, P.-A. & Fredriksson, P., 2000. "LINDA - Longitudinal INdividual DAta for Sweden," Papers 2000:19, Uppsala - Working Paper Series.
  6. Bo Honoré, 2002. "Nonlinear Models with Panel Data," CAM Working Papers 2002-02, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
  7. Dean R. Hyslop, 1999. "State Dependence, Serial Correlation and Heterogeneity in Intertemporal Labor Force Participation of Married Women," Econometrica, Econometric Society, vol. 67(6), pages 1255-1294, November.
  8. Luojia Hu, 2002. "Estimation of a Censored Dynamic Panel Data Model," Econometrica, Econometric Society, vol. 70(6), pages 2499-2517, November.
  9. Paul Contoyannis & Andrew M. Jones & Nigel Rice, 2004. "The dynamics of health in the British Household Panel Survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(4), pages 473-503.
  10. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, 05.
  11. Ruud, Paul A., 1986. "Consistent estimation of limited dependent variable models despite misspecification of distribution," Journal of Econometrics, Elsevier, vol. 32(1), pages 157-187, June.
  12. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp3943. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Fallak)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.