IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp18129.html
   My bibliography  Save this paper

Errors in Survey and Administrative Data on Employment Earnings: Austria and the United Kingdom Compared

Author

Listed:
  • Bollinger, Christopher R.

    (University of Kentucky)

  • Jenkins, Stephen P.

    (London School of Economics)

  • Rios-Avila, Fernando

    (Levy Economics Institute)

  • Tasseva, Iva V.

    (LSE)

Abstract

We contribute new cross-national evidence about the nature of measurement errors in employment earnings, fitting the same error components model to harmonised earnings data for Austria and the UK. The model allows for measurement error in the administrative data and linkage error as well as survey measurement error. We find several cross-national similarities in error structure but also intriguing differences in error component probabilities, means, and dispersions.

Suggested Citation

  • Bollinger, Christopher R. & Jenkins, Stephen P. & Rios-Avila, Fernando & Tasseva, Iva V., 2025. "Errors in Survey and Administrative Data on Employment Earnings: Austria and the United Kingdom Compared," IZA Discussion Papers 18129, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp18129
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp18129.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25(3), pages 513-551.
    2. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    3. repec:taf:jnlbes:v:30:y:2012:i:2:p:191-201 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    2. Apostolos Davillas & Victor Hugo Oliveira & Andrew M. Jones, 2024. "A model of errors in BMI based on self-reported and measured anthropometrics with evidence from Brazilian data," Empirical Economics, Springer, vol. 67(5), pages 2371-2410, November.
    3. Nico Thurow, 2025. "Characterizing Measurement Error in the German Socio-Economic Panel Using Linked Survey and Administrative Data," Papers 2501.03015, arXiv.org, revised Aug 2025.
    4. Ha Trong Nguyen & Huong Thu Le & Luke Connelly & Francis Mitrou, 2023. "Accuracy of self‐reported private health insurance coverage," Health Economics, John Wiley & Sons, Ltd., vol. 32(12), pages 2709-2729, December.
    5. Stephen P. Jenkins & Fernando Rios-Avila, 2023. "Finite mixture models for linked survey and administrative data: Estimation and postestimation," Stata Journal, StataCorp LLC, vol. 23(1), pages 53-85, March.
    6. Rafael Carranza & Marc Morgan & Brian Nolan, 2023. "Top Income Adjustments and Inequality: An Investigation of the EU‐SILC," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(3), pages 725-754, September.
    7. R. Bollinger, Christopher & Valentinova Tasseva, Iva, 2022. "Income source confusion using the SILC," ISER Working Paper Series 2022-04, Institute for Social and Economic Research.
    8. Achim Schmillen & Matthias Umkehrer & Till Wachter, 2024. "Measurement error in longitudinal earnings data: evidence from Germany," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 58(1), pages 1-31, December.
    9. Tullio, Federico, 2025. "Dynamics and measurement error in household income data collected with single questions," MPRA Paper 124151, University Library of Munich, Germany.
    10. Stella Martin, 2025. "We Might Both Be Wrong - Reconciliation of Survey and Administrative Earnings Measurements," CQE Working Papers 11025, Center for Quantitative Economics (CQE), University of Muenster.
    11. Stella Martin & Kevin Stabenow & Mark Trede, 2024. "Measurement Error in Earnings," CQE Working Papers 10824, Center for Quantitative Economics (CQE), University of Muenster.
    12. repec:osf:socarx:6vmws_v1 is not listed on IDEAS
    13. David Card & David S. Lee & Zhuan Pei & Andrea Weber, 2015. "Inference on Causal Effects in a Generalized Regression Kink Design," Econometrica, Econometric Society, vol. 83, pages 2453-2483, November.
    14. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    15. Joan Costa‐Font & Cristina Vilaplana‐Prieto, 2025. "The Hidden Value of Adult Informal Care in Europe," Health Economics, John Wiley & Sons, Ltd., vol. 34(4), pages 791-812, April.
    16. Stephen P. Jenkins, 2022. "Top-income adjustments and official statistics on income distribution: the case of the UK," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 151-168, March.
    17. Zachary H. Seeskin, 2016. "Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes," CARRA Working Papers 2016-06, Center for Economic Studies, U.S. Census Bureau.
    18. Michele Lalla & Patrizio Frederic & Daniela Mantovani, 2022. "The inextricable association of measurement errors and tax evasion as examined through a microanalysis of survey data matched with fiscal data: a case study," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1375-1401, December.
    19. Jaanika Meriküll & Tairi Rõõm, 2020. "Stress Tests of the Household Sector Using Microdata from Survey and Administrative Sources," International Journal of Central Banking, International Journal of Central Banking, vol. 16(2), pages 203-248, March.
    20. Quinn Moore & Irma Perez-Johnson & Robert Santillano, 2018. "Decomposing Differences in Impacts on Survey- and Administrative-Measured Earnings From a Job Training Voucher Experiment," Evaluation Review, , vol. 42(5-6), pages 515-549, October.
    21. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp18129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.