IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2023-194.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Cryptocarbon: How Much Is the Corrective Tax?

Author

Listed:
  • Mr. Shafik Hebous
  • Nate Vernon

Abstract

With increasing awareness of past environmental damage from crypto mining, questions arise as to how persistent the problem will be in the future and how taxation can help in addressing this negative externality. We estimate that the global demand for electricity by crypto miners reached that of Australia or Spain, resulting in 0.33% of global CO2 emissions in 2022. Projections suggest sustained future electricity demand and indicate further increases in CO2 emissions if crypto prices significantly increase and the energy efficiency of mining hardware is low. To address global warming, we estimate the corrective excise on the electricity used by crypto miners to be USD 0.045 per kWh, on average. Considering also air pollution costs raises the tax to USD 0.087 per kWh. Country-specific estimates vary depending on their electricity sources.

Suggested Citation

  • Mr. Shafik Hebous & Nate Vernon, 2023. "Cryptocarbon: How Much Is the Corrective Tax?," IMF Working Papers 2023/194, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2023/194
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=539214
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bruno, August & Weber, Paige & Yates, Andrew J., 2023. "Can Bitcoin mining increase renewable electricity capacity?," Resource and Energy Economics, Elsevier, vol. 74(C).
    2. Michael Keen & Ian Parry & James Roaf, 2022. "Border carbon adjustments: rationale, design and impact," Fiscal Studies, John Wiley & Sons, vol. 43(3), pages 209-234, September.
    3. Spyros Foteinis, 2018. "Bitcoin’s alarming carbon footprint," Nature, Nature, vol. 554(7691), pages 169-169, February.
    4. Max J. Krause & Thabet Tolaymat, 2018. "Author Correction: Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(12), pages 814-814, December.
    5. Sean Foley & Jonathan R Karlsen & Tālis J Putniņš, 2019. "Sex, Drugs, and Bitcoin: How Much Illegal Activity Is Financed through Cryptocurrencies?," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1798-1853.
    6. Max J. Krause & Thabet Tolaymat, 2018. "Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(11), pages 711-718, November.
    7. Michael Keen, 1998. "The balance between specific and ad valorem taxation," Fiscal Studies, Institute for Fiscal Studies, vol. 19(1), pages 1-37, February.
    8. Mr. Simon Black & Antung A. Liu & Ian W.H. Parry & Nate Vernon, 2023. "IMF Fossil Fuel Subsidies Data: 2023 Update," IMF Working Papers 2023/169, International Monetary Fund.
    9. Camilo Mora & Randi L. Rollins & Katie Taladay & Michael B. Kantar & Mason K. Chock & Mio Shimada & Erik C. Franklin, 2018. "Bitcoin emissions alone could push global warming above 2°C," Nature Climate Change, Nature, vol. 8(11), pages 931-933, November.
    10. Lars Dittmar & Aaron Praktiknjo, 2019. "Could Bitcoin emissions push global warming above 2 °C?," Nature Climate Change, Nature, vol. 9(9), pages 656-657, September.
    11. Eric Masanet & Arman Shehabi & Nuoa Lei & Harald Vranken & Jonathan Koomey & Jens Malmodin, 2019. "Implausible projections overestimate near-term Bitcoin CO2 emissions," Nature Climate Change, Nature, vol. 9(9), pages 653-654, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hokkanen, Topi, 2023. "Externalities and market failures of cryptocurrencies," BoF Economics Review 4/2023, Bank of Finland.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shize Qin & Lena Klaa{ss}en & Ulrich Gallersdorfer & Christian Stoll & Da Zhang, 2020. "Bitcoin's future carbon footprint," Papers 2011.02612, arXiv.org, revised Jan 2021.
    2. Sharif, Arshian & Brahim, Mariem & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "Analysis of the spillover effects between green economy, clean and dirty cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    3. Baur, Dirk G. & Oll, Josua, 2022. "Bitcoin investments and climate change: A financial and carbon intensity perspective," Finance Research Letters, Elsevier, vol. 47(PA).
    4. Agur, Itai & Lavayssière, Xavier & Villegas Bauer, Germán & Deodoro, Jose & Martinez Peria, Soledad & Sandri, Damiano & Tourpe, Hervé, 2023. "Lessons from crypto assets for the design of energy efficient digital currencies," Ecological Economics, Elsevier, vol. 212(C).
    5. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    6. Mingbo Zheng & Gen-Fu Feng & Xinxin Zhao & Chun-Ping Chang, 2023. "The transaction behavior of cryptocurrency and electricity consumption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-18, December.
    7. Anh Ngoc Quang Huynh & Duy Duong & Tobias Burggraf & Hien Thi Thu Luong & Nam Huu Bui, 2022. "Energy Consumption and Bitcoin Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 79-93, March.
    8. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2022. "Machine Learning the Carbon Footprint of Bitcoin Mining," JRFM, MDPI, vol. 15(2), pages 1-30, February.
    9. Podhorsky, Andrea, 2023. "Taxing bitcoin: Incentivizing the difficulty adjustment mechanism to reduce electricity usage," International Review of Financial Analysis, Elsevier, vol. 86(C).
    10. Schinckus, Christophe, 2021. "Proof-of-work based blockchain technology and Anthropocene: An undermined situation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
    12. Nishant Sapra & Imlak Shaikh & Ashutosh Dash, 2023. "Impact of Proof of Work (PoW)-Based Blockchain Applications on the Environment: A Systematic Review and Research Agenda," JRFM, MDPI, vol. 16(4), pages 1-29, March.
    13. Xuejia Sang & Xiaopeng Leng & Linfu Xue & Xiangjin Ran, 2022. "Based on the Time-Spatial Power-Based Cryptocurrency Miner Driving Force Model, Establish a Global CO 2 Emission Prediction Framework after China Bans Cryptocurrency," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    14. Papp, Anna & Almond, Douglas & Zhang, Shuang, 2023. "Bitcoin and carbon dioxide emissions: Evidence from daily production decisions," Journal of Public Economics, Elsevier, vol. 227(C).
    15. Sergio Luis Náñez Alonso & Javier Jorge-Vázquez & Miguel Ángel Echarte Fernández & Ricardo Francisco Reier Forradellas, 2021. "Cryptocurrency Mining from an Economic and Environmental Perspective. Analysis of the Most and Least Sustainable Countries," Energies, MDPI, vol. 14(14), pages 1-22, July.
    16. Tao, Ran & Su, Chi-Wei & Naqvi, Bushra & Rizvi, Syed Kumail Abbas, 2022. "Can Fintech development pave the way for a transition towards low-carbon economy: A global perspective," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    17. Pavel Ciaian & Andrej Cupak & Pirmin Fessler & d'Artis Kancs, 2022. "Environmental-Social-Governance Preferences and Investments in Crypto-Assets (Pavel Ciaian, Andrej Cupak, Pirmin Fessler, d’Artis Kancs)," Working Papers 243, Oesterreichische Nationalbank (Austrian Central Bank).
    18. Sarker, Provash Kumer & Lau, Chi Keung Marco & Pradhan, Ashis Kumar, 2023. "Asymmetric effects of climate policy uncertainty and energy prices on bitcoin prices," Innovation and Green Development, Elsevier, vol. 2(2).
    19. Abakah, Emmanuel Joel Aikins & Wali Ullah, GM & Adekoya, Oluwasegun B. & Osei Bonsu, Christiana & Abdullah, Mohammad, 2023. "Blockchain market and eco-friendly financial assets: Dynamic price correlation, connectedness and spillovers with portfolio implications," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 218-243.
    20. Sondes Mbarek & Donia Trabelsi & Michel Berne, 2020. "Are virtual currencies virtuous? Ethical and environmental issues," Post-Print hal-02434877, HAL.

    More about this item

    Keywords

    Corrective Taxes; Carbon Tax; Mitigation Policy; Crypto Assets; Crypto Mining; Bitcoin; electricity demand; corrective tax; energy efficiency of mining hardware; pollution cost; Bitcoin price; Greenhouse gas emissions; Electricity; Mining sector; Virtual currencies; Global;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2023/194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.