IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5332-d804564.html
   My bibliography  Save this article

Based on the Time-Spatial Power-Based Cryptocurrency Miner Driving Force Model, Establish a Global CO 2 Emission Prediction Framework after China Bans Cryptocurrency

Author

Listed:
  • Xuejia Sang

    (School of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China)

  • Xiaopeng Leng

    (Computer and Cyber Security College, Chengdu University of Technology, Chengdu 610059, China)

  • Linfu Xue

    (College of Earth Science, Jilin University, Changchun 130061, China
    Technology Innovation Center of Big Data Analysis and Application of Earth Science, Ministry of Natural Resources, Changchun 130061, China)

  • Xiangjin Ran

    (College of Earth Science, Jilin University, Changchun 130061, China
    Technology Innovation Center of Big Data Analysis and Application of Earth Science, Ministry of Natural Resources, Changchun 130061, China)

Abstract

The energy consumption and carbon footprint of cryptocurrencies have always been a popular topic. However, most of the existing studies only focus on one cryptocurrency, Bitcoin, and there is a lack of long-term monitoring studies that summarize all cryptocurrencies. By constructing a time series hash rate/power model, this research obtained the 10-year time series data on energy consumption dataset of global top-25 cryptocurrencies for the first time. Both the temporal coverage and the spatiotemporal resolution of the data exceed previous studies. The results show that Bitcoin’s power consumption only accounts for 58% of the top-25 cryptocurrencies. After China bans cryptocurrencies, the conservative change in global CO 2 emissions from 2020 will be between −0.4% and 4.4%, and Central Asian countries such as Kazakhstan are likely to become areas of rapid growth in carbon emissions from cryptocurrencies.

Suggested Citation

  • Xuejia Sang & Xiaopeng Leng & Linfu Xue & Xiangjin Ran, 2022. "Based on the Time-Spatial Power-Based Cryptocurrency Miner Driving Force Model, Establish a Global CO 2 Emission Prediction Framework after China Bans Cryptocurrency," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5332-:d:804564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuli Shan & Jiamin Ou & Daoping Wang & Zhao Zeng & Shaohui Zhang & Dabo Guan & Klaus Hubacek, 2021. "Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement," Nature Climate Change, Nature, vol. 11(3), pages 200-206, March.
    2. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector," Renewable Energy, Elsevier, vol. 181(C), pages 803-819.
    3. Spyros Foteinis, 2018. "Bitcoin’s alarming carbon footprint," Nature, Nature, vol. 554(7691), pages 169-169, February.
    4. Camilo Mora & Randi L. Rollins & Katie Taladay & Michael B. Kantar & Mason K. Chock & Mio Shimada & Erik C. Franklin, 2018. "Bitcoin emissions alone could push global warming above 2°C," Nature Climate Change, Nature, vol. 8(11), pages 931-933, November.
    5. Max J. Krause & Thabet Tolaymat, 2018. "Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(11), pages 711-718, November.
    6. Eric Masanet & Arman Shehabi & Nuoa Lei & Harald Vranken & Jonathan Koomey & Jens Malmodin, 2019. "Implausible projections overestimate near-term Bitcoin CO2 emissions," Nature Climate Change, Nature, vol. 9(9), pages 653-654, September.
    7. Shangrong Jiang & Yuze Li & Quanying Lu & Yongmiao Hong & Dabo Guan & Yu Xiong & Shouyang Wang, 2021. "Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Stuart Wimbush, 2018. "Cryptocurrency mining is neither wasteful nor uneconomic," Nature, Nature, vol. 555(7697), pages 443-443, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junwu Wang & Yinghui Song & Wei Wang & Suikuan Wang & Feng Guo & Jiequn Lu, 2022. "Marine Construction Waste Recycling Mechanism Considering Public Participation and Carbon Trading: A Study on Dynamic Modeling and Simulation Based on Sustainability Policy," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    2. Zhi Yang & Wenping Li & Liangning Li & Shaogang Lei & Jiawei Tian & Gang Wang & Xuejia Sang, 2022. "Spatiotemporal Variation and Influencing Factors of Vegetation Growth in Mining Areas: A Case Study in a Colliery in Northern China," Sustainability, MDPI, vol. 14(15), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingbo Zheng & Gen-Fu Feng & Xinxin Zhao & Chun-Ping Chang, 2023. "The transaction behavior of cryptocurrency and electricity consumption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-18, December.
    2. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2022. "Machine Learning the Carbon Footprint of Bitcoin Mining," JRFM, MDPI, vol. 15(2), pages 1-30, February.
    3. Baur, Dirk G. & Oll, Josua, 2022. "Bitcoin investments and climate change: A financial and carbon intensity perspective," Finance Research Letters, Elsevier, vol. 47(PA).
    4. Sergio Luis Náñez Alonso & Javier Jorge-Vázquez & Miguel Ángel Echarte Fernández & Ricardo Francisco Reier Forradellas, 2021. "Cryptocurrency Mining from an Economic and Environmental Perspective. Analysis of the Most and Least Sustainable Countries," Energies, MDPI, vol. 14(14), pages 1-22, July.
    5. Lei, Nuoa & Masanet, Eric & Koomey, Jonathan, 2021. "Best practices for analyzing the direct energy use of blockchain technology systems: Review and policy recommendations," Energy Policy, Elsevier, vol. 156(C).
    6. Agur, Itai & Lavayssière, Xavier & Villegas Bauer, Germán & Deodoro, Jose & Martinez Peria, Soledad & Sandri, Damiano & Tourpe, Hervé, 2023. "Lessons from crypto assets for the design of energy efficient digital currencies," Ecological Economics, Elsevier, vol. 212(C).
    7. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    8. Natkamon Tovanich & Nicolas Soulié & Nicolas Heulot & Petra Isenberg, 2022. "MiningVis: visual analytics of the Bitcoin mining economy," Post-Print hal-03348145, HAL.
    9. Zhang, Dongna & Chen, Xihui Haviour & Lau, Chi Keung Marco & Xu, Bing, 2023. "Implications of cryptocurrency energy usage on climate change," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    10. Sharif, Arshian & Brahim, Mariem & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "Analysis of the spillover effects between green economy, clean and dirty cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    11. Schinckus, Christophe, 2021. "Proof-of-work based blockchain technology and Anthropocene: An undermined situation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
    13. Radosław Miśkiewicz & Krzysztof Matan & Jakub Karnowski, 2022. "The Role of Crypto Trading in the Economy, Renewable Energy Consumption and Ecological Degradation," Energies, MDPI, vol. 15(10), pages 1-15, May.
    14. Ye, Wang & Wong, Wing-Keung & Arnone, Gioia & Nassani, Abdelmohsen A. & Haffar, Mohamed & Faiz, Muhammad Fauzinudin, 2023. "Crypto currency and green investment impact on global environment: A time series analysis," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 155-169.
    15. Yuze Li & Shangrong Jiang & Xuerong Li & Shouyang Wang, 2022. "Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
    16. Elsayed, Ahmed H. & Nasir, Muhammad Ali, 2022. "Central bank digital currencies: An agenda for future research," Research in International Business and Finance, Elsevier, vol. 62(C).
    17. Murray A. Rudd, 2022. "100 Important Questions about Bitcoin’s Energy Use and ESG Impacts," Challenges, MDPI, vol. 14(1), pages 1-16, December.
    18. Sarker, Provash Kumer & Lau, Chi Keung Marco & Pradhan, Ashis Kumar, 2023. "Asymmetric effects of climate policy uncertainty and energy prices on bitcoin prices," Innovation and Green Development, Elsevier, vol. 2(2).
    19. Johannes Sedlmeir & Hans Ulrich Buhl & Gilbert Fridgen & Robert Keller, 2020. "The Energy Consumption of Blockchain Technology: Beyond Myth," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(6), pages 599-608, December.
    20. Sondes Mbarek & Donia Trabelsi & Michel Berne, 2020. "Are virtual currencies virtuous? Ethical and environmental issues," Post-Print hal-02434877, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5332-:d:804564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.