IDEAS home Printed from https://ideas.repec.org/p/ihs/ihsesp/103.html
   My bibliography  Save this paper

Hedging Barrier Options: Current Methods and Alternatives

Author

Listed:
  • Dupont, Dominique Y.

    (EURANDOM - TUE, The Netherlands)

Abstract

This paper applies to the static hedge of barrier options a technique, mean-square hedging, designed to minimize the size of the hedging error when perfect replication is not possible. It introduces an extension of this technique which preserves the computational efficiency of mean-square hedging while being consistent with any prior pricing model or with any linear constraint on the hedging residual. This improves on current static hedging methods, which aim at exactly replicating barrier options and rely on strong assumptions on the availability of traded options with certain strikes or maturities, or on the distribution of the underlying asset.

Suggested Citation

  • Dupont, Dominique Y., 2001. "Hedging Barrier Options: Current Methods and Alternatives," Economics Series 103, Institute for Advanced Studies.
  • Handle: RePEc:ihs:ihsesp:103
    as

    Download full text from publisher

    File URL: https://irihs.ihs.ac.at/id/eprint/1366
    File Function: First version, 2001
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Peter Carr & Katrina Ellis & Vishal Gupta, 1998. "Static Hedging of Exotic Options," Journal of Finance, American Finance Association, vol. 53(3), pages 1165-1190, June.
    4. Peter G. Zhang, 1998. "Hedging Exotic Options," World Scientific Book Chapters, in: Exotic Options A Guide to Second Generation Options, chapter 35, pages 639-643, World Scientific Publishing Co. Pte. Ltd..
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    7. David S. Bates, "undated". "The Cash Premium: Option Pricing Under Asymmetric Processes, with Applications to Options on Deutschemark Futures," Rodney L. White Center for Financial Research Working Papers 36-88, Wharton School Rodney L. White Center for Financial Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sbuelz, A., 2000. "Hedging Double Barriers with Singles," Discussion Paper 2000-112, Tilburg University, Center for Economic Research.
    2. J. Maruhn & E. Sachs, 2009. "Robust static hedging of barrier options in stochastic volatility models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 405-433, December.
    3. Alessandro Sbuelz, 2005. "Hedging Double Barriers With Singles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(03), pages 393-407.
    4. Sbuelz, A., 2000. "Hedging Double Barriers with Singles," Other publications TiSEM e810e3ab-1936-457e-a3ae-7, Tilburg University, School of Economics and Management.
    5. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    6. Alev{s} v{C}ern'y, 2016. "Discrete-Time Quadratic Hedging of Barrier Options in Exponential L\'{e}vy Model," Papers 1603.03747, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 12(1), pages 3-46.
    2. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    3. Peter Carr & Roger Lee & Matthew Lorig, 2015. "Robust replication of barrier-style claims on price and volatility," Papers 1508.00632, arXiv.org, revised Jan 2022.
    4. Bent Jesper Christensen & Morten Ø. Nielsen, 2005. "The Implied-realized Volatility Relation With Jumps In Underlying Asset Prices," Working Paper 1186, Economics Department, Queen's University.
    5. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    6. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    7. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2005. "Forecasting Exchange Rate Volatility In The Presence Of Jumps," Working Paper 1187, Economics Department, Queen's University.
    8. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    9. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    10. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    11. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    12. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    13. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    14. Bin Xie & Weiping Li & Nan Liang, 2021. "Pricing S&P 500 Index Options with L\'evy Jumps," Papers 2111.10033, arXiv.org, revised Nov 2021.
    15. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    16. José Fajardo & Ernesto Mordecki, 2006. "Skewness Premium with Lévy Processes," IBMEC RJ Economics Discussion Papers 2006-04, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    17. Da Silva, M. E. & Guimarães, B. V., 1999. "Precificação de Opções com Volatilidade Estocástica e Saltos," Finance Lab Working Papers flwp_11, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    18. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    19. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    20. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.

    More about this item

    Keywords

    Barrier options; Static hedging; Mean-square hedging;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ihs:ihsesp:103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Doris Szoncsitz (email available below). General contact details of provider: https://edirc.repec.org/data/deihsat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.