IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/67-18.html
   My bibliography  Save this paper

Estimation of a nonseparable heterogenous demand function with shape restrictions and Berkson errors

Author

Listed:
  • Richard Blundell

    (Institute for Fiscal Studies and University College London)

  • Joel L. Horowitz

    (Institute for Fiscal Studies and Northwestern University)

  • Matthias Parey

    (Institute for Fiscal Studies and University of Surrey)

Abstract

Berkson errors are commonplace in empirical microeconomics and occur whenever we observe an average in a specified group rather than the true individual value. In consumer demand this form of measurement error is present because the price an individual pays is often measured by the average price paid by individuals in a specified group (e.g., a county). We show the importance of such measurement errors for the estimation of demand in a setting with nonseparable unobserved heterogeneity. We develop a consistent estimator using external information on the true distribution of prices. Examining the demand for gasoline in the U.S., accounting for Berkson errors is found to be quantitatively important for estimating price effects and for welfare calculations. Imposing the Slutsky shape constraint greatly reduces the sensitivity to Berkson errors.

Suggested Citation

  • Richard Blundell & Joel L. Horowitz & Matthias Parey, 2018. "Estimation of a nonseparable heterogenous demand function with shape restrictions and Berkson errors," CeMMAP working papers CWP67/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:67/18
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/CWP671818.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Hoderlein & Anne Vanhems, 2018. "Estimating the distribution of welfare effects using quantiles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 52-72, January.
    2. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871532, October.
    3. Hausman, Jerry A & Newey, Whitney K, 1995. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Econometrica, Econometric Society, vol. 63(6), pages 1445-1476, November.
    4. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2012. "Measuring the price responsiveness of gasoline demand: Economic shape restrictions and nonparametric demand estimation," Quantitative Economics, Econometric Society, vol. 3(1), pages 29-51, March.
    5. Jerry A. Hausman & Whitney K. Newey, 2017. "Nonparametric Welfare Analysis," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 521-546, September.
    6. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692106, October.
    7. Adonis Yatchew & Joungyeo Angela No, 2001. "Household Gasoline Demand in Canada," Econometrica, Econometric Society, vol. 69(6), pages 1697-1709, November.
    8. Dette, Holger & Hoderlein, Stefan & Neumeyer, Natalie, 2016. "Testing multivariate economic restrictions using quantiles: The example of Slutsky negative semidefiniteness," Journal of Econometrics, Elsevier, vol. 191(1), pages 129-144.
    9. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692090, October.
    10. Susanne M. Schennach, 2013. "Regressions with Berkson errors in covariates - A nonparametric approach," Papers 1308.2836, arXiv.org.
    11. Richard Blundell & Joel Horowitz & Matthias Parey, 2017. "Nonparametric Estimation of a Nonseparable Demand Function under the Slutsky Inequality Restriction," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 291-304, May.
    12. Benjamin Atkinson, 2008. "On Retail Gasoline Pricing Websites: Potential Sample Selection Biases and Their Implications for Empirical Research," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 33(2), pages 161-175, September.
    13. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871549, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Blundell & Joel Horowitz & Matthias Parey, 2022. "Estimation of a Heterogeneous Demand Function with Berkson Errors," The Review of Economics and Statistics, MIT Press, vol. 104(5), pages 877-889, December.
    2. Denis Chetverikov & Daniel Wilhelm, 2017. "Nonparametric Instrumental Variable Estimation Under Monotonicity," Econometrica, Econometric Society, vol. 85, pages 1303-1320, July.
    3. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    4. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.
    5. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    6. Andrea Attar & Thomas Mariotti & François Salanié, 2020. "The Social Costs of Side Trading," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1608-1622.
    7. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    8. Ralph Stinebrickner & Todd R. Stinebrickner, 2014. "A Major in Science? Initial Beliefs and Final Outcomes for College Major and Dropout," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(1), pages 426-472.
    9. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    10. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    11. Markus Haavio & Kaisa Kotakorpi, 2012. "Sin Licenses Revisited," CESifo Working Paper Series 4010, CESifo.
    12. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    13. Chesher, Andrew, 2013. "Semiparametric Structural Models Of Binary Response: Shape Restrictions And Partial Identification," Econometric Theory, Cambridge University Press, vol. 29(2), pages 231-266, April.
    14. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    15. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    16. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    17. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    18. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    19. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    20. Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor & Varneskov, Rasmus T., 2019. "Unified inference for nonlinear factor models from panels with fixed and large time span," Journal of Econometrics, Elsevier, vol. 212(1), pages 4-25.
    21. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.

    More about this item

    Keywords

    consumer demand; nonseparable models; quantile regression; measurement error; gasoline demand; Berkson errors.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:67/18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.