IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Regressions with Berkson errors in covariates - A nonparametric approach

  • Susanne M. Schennach

This paper establishes that so-called instrumental variables enable the identification and the estimation of a fully nonparametric regression model with Berkson-type measurement error in the regressors. An estimator is proposed and proven to be consistent. Its practical performance and feasibility are investigated via Monte Carlo simulations as well as through an epidemiological application investigating the effect of particulate air pollution on respiratory health. These examples illustrate that Berkson errors can clearly not be neglected in nonlinear regression models and that the proposed method represents an effective remedy.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/1308.2836
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 1308.2836.

as
in new window

Length:
Date of creation: Aug 2013
Date of revision:
Publication status: Published in Annals of Statistics 2013, Vol. 41, No. 3, 1642-1668
Handle: RePEc:arx:papers:1308.2836
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
  2. Susanne M Schennach, 2007. "Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models," Econometrica, Econometric Society, vol. 75(1), pages 201-239, 01.
  3. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
  4. Aurore Delaigle & Peter Hall & Peihua Qiu, 2006. "Nonparametric methods for solving the Berkson errors-in-variables problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 201-220.
  5. Bani Mallick & F. Owen Hoffman & Raymond J. Carroll, 2002. "Semiparametric Regression Modeling with Mixtures of Berkson and Classical Error, with Application to Fallout from the Nevada Test Site," Biometrics, The International Biometric Society, vol. 58(1), pages 13-20, 03.
  6. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, 09.
  7. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
  8. van der Laan Mark J. & Dudoit Sandrine & Keles Sunduz, 2004. "Asymptotic Optimality of Likelihood-Based Cross-Validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-25, March.
  9. Raymond J. Carroll & Aurore Delaigle & Peter Hall, 2007. "Non-parametric regression estimation from data contaminated by a mixture of Berkson and classical errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 859-878.
  10. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, 01.
  11. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, 05.
  12. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, 01.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1308.2836. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.