IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Nonparametric inference for unbalance time series data

  • Oliver Linton


    (Institute for Fiscal Studies and University of Cambridge)

Estimation of heteroskedasticity and autocorrelation consistent covariance matrices (HACs) is a well established problem in time series. Results have been established under a variety of weak conditions on temporal dependence and heterogeneity that allow one to conduct inference on a variety of statistics, see Newey and West (1987), Hansen (1992), de Jong and Davidson (2000), and Robinson (2004). Indeed there is an extensive literature on automating these procedures starting with Andrews (1991). Alternative methods for conducting inference include the bootstrap for which there is also now a very active research program in time series especially, see Lahiri (2003) for an overview. One convenient method for time series is the subsampling approach of Politis, Romano, andWolf (1999). This method was used by Linton, Maasoumi, andWhang (2003) (henceforth LMW) in the context of testing for stochastic dominance. This paper is concerned with the practical problem of conducting inference in a vector time series setting when the data is unbalanced or incomplete. In this case, one can work only with the common sample, to which a standard HAC/bootstrap theory applies, but at the expense of throwing away data and perhaps losing effciency. An alternative is to use some sort of imputation method, but this requires additional modelling assumptions, which we would rather avoid.1 We show how the sampling theory changes and how to modify the resampling algorithms to accommodate the problem of missing data. We also discuss effciency and power. Unbalanced data of the type we consider are quite common in financial panel data, see for example Connor and Korajczyk (1993). These data also occur in cross-country studies.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP06/04.

in new window

Length: 12 pp.
Date of creation: Apr 2004
Date of revision:
Handle: RePEc:ifs:cemmap:06/04
Contact details of provider: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page:

More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 735-765.
  2. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  3. Robert M. De Jong & James Davidson, 2000. "Consistency of Kernel Estimators of Heteroscedastic and Autocorrelated Covariance Matrices," Econometrica, Econometric Society, vol. 68(2), pages 407-424, March.
  4. Peter C.B. Phillips, 2004. "HAC Estimation by Automated Regression," Cowles Foundation Discussion Papers 1470, Cowles Foundation for Research in Economics, Yale University.
  5. Connor, Gregory & Korajczyk, Robert A, 1993. " A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-91, September.
  6. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-72, July.
  7. Peter M. Robinson, 2004. "Robust covariance matrix estimation : HAC estimates with long memory/antipersistence correction," LSE Research Online Documents on Economics 2157, London School of Economics and Political Science, LSE Library.
  8. Peter M Robinson, 2004. "ROBUST COVARIANCE MATRIX ESTIMATION: "HAC" Estimates with Long Memory/Antipersistence Correction," STICERD - Econometrics Paper Series 471, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  9. repec:cep:stiecm:/2004/471 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:06/04. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benita Rajania)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.