IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/01-01.html
   My bibliography  Save this paper

Exogenous impact and conditional quantile functions

Author

Listed:
  • Andrew Chesher

    () (Institute for Fiscal Studies and University College London)

Abstract

An exogenous impact function is defined as the derivative of a structural function with respect to an endogenous variable, other variables, including unobservable variables held fixed. Unobservable variables are fixed at specific quantiles of their marginal distributions. Exogenous impact functions reveal the impact of an exogenous shift in a variable perhaps determined endogenously in the data generating process. They provide information about the variation in exogenous impacts across quantiles of the distributions of the unobservable variables that appear in the structural model. This paper considers nonparametric identification of exogenous impact functions under quantile independence conditions. It is shown that, when valid instrumental variables are present, exogenous impact functions can be identified as functionals of conditional quantile functions that involve only observable random variables. This suggests parametric, semiparametric and nonparametric strategies for estimating exogenous impact functions.

Suggested Citation

  • Andrew Chesher, 2001. "Exogenous impact and conditional quantile functions," CeMMAP working papers CWP01/01, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:01/01
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp0101.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Amemiya, Takeshi, 1982. "Two Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 50(3), pages 689-711, May.
    2. Newey, Whitney K. & Powell, James L., 1990. "Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 6(03), pages 295-317, September.
    3. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    4. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 487-535.
    5. Jesse Levin, 2001. "For whom the reductions count: A quantile regression analysis of class size and peer effects on scholastic achievement," Empirical Economics, Springer, vol. 26(1), pages 221-246.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    8. Powell, James L, 1983. "The Asymptotic Normality of Two-Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 51(5), pages 1569-1575, September.
    9. repec:cup:etheor:v:6:y:1990:i:3:p:295-317 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    2. Brunello, Giorgio & Fort, Margherita & Weber, Guglielmo, 2007. "“For One More Year with You”: Changes in Compulsory Schooling, Education and the Distribution of Wages in Europe," IZA Discussion Papers 3102, Institute for the Study of Labor (IZA).
    3. Chesher, Andrew, 2007. "Instrumental values," Journal of Econometrics, Elsevier, vol. 139(1), pages 15-34, July.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:01/01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.