IDEAS home Printed from https://ideas.repec.org/p/ice/wpaper/wp35.html
   My bibliography  Save this paper

Computational Efficiency in Bayesian Model and Variable Selection

Author

Listed:
  • Jana Eklund
  • Sune Karlsson

Abstract

This paper is concerned with the efficient implementation of Bayesian model averaging (BMA) and Bayesian variable selection, when the number of candidate variables and models is large, and estimation of posterior model probabilities must be based on a subset of the models. Efficient implementation is concerned with two issues, the efficiency of the MCMC algorithm itself and efficient computation of the quantities needed to obtain a draw from the MCMC algorithm. For the first aspect, it is desirable that the chain moves well and quickly through the model space and takes draws from regions with high probabilities. In this context there is a natural trade-off between local moves, which make use of the current parameter values to propose plausible values for model parameters, and more global transitions, which potentially allow exploration of the distribution of interest in fewer steps, but where each step is more computationally intensive. We assess the convergence properties of simple samplers based on local moves and some recently proposed algorithms intended to improve on the basic samplers. For the second aspect, efficient computation within the sampler, we focus on the important case of linear models where the computations essentially reduce to least squares calculations. When the chain makes local moves, adding or dropping a variable, substantial gains in efficiency can be made by updating the previous least squares solution.

Suggested Citation

  • Jana Eklund & Sune Karlsson, 2007. "Computational Efficiency in Bayesian Model and Variable Selection," Economics wp35, Department of Economics, Central bank of Iceland.
  • Handle: RePEc:ice:wpaper:wp35
    as

    Download full text from publisher

    File URL: http://www.sedlabanki.is/lisalib/getfile.aspx?itemid=5156
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    2. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    3. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
    4. Sune Karlsson & Tor Jacobson, 2004. "Finding good predictors for inflation: a Bayesian model averaging approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 479-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesús Crespo Cuaresma & Gernot Doppelhofer & Martin Feldkircher, 2014. "The Determinants of Economic Growth in European Regions," Regional Studies, Taylor & Francis Journals, vol. 48(1), pages 44-67, January.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ice:wpaper:wp35. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Central Bank of Iceland). General contact details of provider: http://edirc.repec.org/data/sedgvis.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.