IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Computational Efficiency in Bayesian Model and Variable Selection

  • Jana Eklund
  • Sune Karlsson

This paper is concerned with the efficient implementation of Bayesian model averaging (BMA) and Bayesian variable selection, when the number of candidate variables and models is large, and estimation of posterior model probabilities must be based on a subset of the models. Efficient implementation is concerned with two issues, the efficiency of the MCMC algorithm itself and efficient computation of the quantities needed to obtain a draw from the MCMC algorithm. For the first aspect, it is desirable that the chain moves well and quickly through the model space and takes draws from regions with high probabilities. In this context there is a natural trade-off between local moves, which make use of the current parameter values to propose plausible values for model parameters, and more global transitions, which potentially allow exploration of the distribution of interest in fewer steps, but where each step is more computationally intensive. We assess the convergence properties of simple samplers based on local moves and some recently proposed algorithms intended to improve on the basic samplers. For the second aspect, efficient computation within the sampler, we focus on the important case of linear models where the computations essentially reduce to least squares calculations. When the chain makes local moves, adding or dropping a variable, substantial gains in efficiency can be made by updating the previous least squares solution.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sedlabanki.is/lisalib/getfile.aspx?itemid=5156
Download Restriction: no

Paper provided by Department of Economics, Central bank of Iceland in its series Economics with number wp35.

as
in new window

Length:
Date of creation: May 2007
Date of revision:
Handle: RePEc:ice:wpaper:wp35
Contact details of provider: Postal: Kalkofnsvegi 1, 150 Reykjavik
Phone: 569-9600
Fax: 569-9605
Web page: http://www.sedlabanki.is/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
  2. Jacobson, Tor & Karlsson, Sune, 2002. "Finding Good Predictors for Inflation: A Bayesian Model Averaging Approach," Working Paper Series 138, Sveriges Riksbank (Central Bank of Sweden).
  3. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
  4. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ice:wpaper:wp35. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Central Bank of Iceland)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.