IDEAS home Printed from https://ideas.repec.org/p/ice/wpaper/wp34.html
   My bibliography  Save this paper

An Embarrassment of Riches: Forecasting Using Large Panels

Author

Listed:
  • Jana Eklund
  • Sune Karlsson

Abstract

The problem of having to select a small subset of predictors from a large number of useful variables can be circumvented nowadays in forecasting. One possibility is to efficiently and systematically evaluate all predictors and almost all possible models that these predictors in combination can give rise to. The idea of combining forecasts from various indicator models by using Bayesian model averaging is explored, and compared to diffusion indexes, another method using large number of predictors to forecast. In addition forecasts based on the median model are considered.

Suggested Citation

  • Jana Eklund & Sune Karlsson, 2007. "An Embarrassment of Riches: Forecasting Using Large Panels," Economics wp34, Department of Economics, Central bank of Iceland.
  • Handle: RePEc:ice:wpaper:wp34
    as

    Download full text from publisher

    File URL: http://www.sedlabanki.is/lisalib/getfile.aspx?itemid=5128
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sune Karlsson & Tor Jacobson, 2004. "Finding good predictors for inflation: a Bayesian model averaging approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 479-496.
    2. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    3. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    4. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
    5. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    6. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riso, Luigi & Vacca, Gianmarco, 2024. "Sentiment dynamics and volatility: A study based on GARCH-MIDAS and machine learning," Finance Research Letters, Elsevier, vol. 62(PB).
    2. Jana Eklund & Sune Karlsson, 2007. "Forecast Combination and Model Averaging Using Predictive Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
    3. Yin-Wong Cheung & Shi He, 2019. "Truths and Myths About RMB Misalignment: A Meta-analysis," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 61(3), pages 464-492, September.
    4. repec:zbw:bofitp:2019_003 is not listed on IDEAS
    5. Yin-Wong Cheung & Shi He, 2019. "Truths and Myths About RMB Misalignment: A Meta-analysis," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 61(3), pages 464-492, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliana González, 2010. "Bayesian Model Averaging. An Application to Forecast Inflation in Colombia," Borradores de Economia 7013, Banco de la Republica.
    2. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    3. Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
    4. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    5. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    6. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    7. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    8. Michael K. Andersson & Sune Karlsson, 2008. "Bayesian forecast combination for VAR models," Advances in Econometrics, in: Bayesian Econometrics, pages 501-524, Emerald Group Publishing Limited.
    9. Knut Aastveit & Tørres Trovik, 2012. "Nowcasting norwegian GDP: the role of asset prices in a small open economy," Empirical Economics, Springer, vol. 42(1), pages 95-119, February.
    10. Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016. "Forecasting US real private residential fixed investment using a large number of predictors," Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
    11. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    12. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    13. Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
    14. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    15. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    16. repec:dau:papers:123456789/11663 is not listed on IDEAS
    17. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
    18. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    19. Chien-jung Ting & Yi-Long Hsiao & Rui-jun Su, 2022. "Application of the Real-Time Tourism Data in Nowcasting the Service Consumption in Taiwan," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(4), pages 1-4.
    20. Jana Eklund & Sune Karlsson, 2007. "Forecast Combination and Model Averaging Using Predictive Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
    21. Nii Ayi Armah & Norman Swanson, 2011. "Some variables are more worthy than others: new diffusion index evidence on the monitoring of key economic indicators," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 43-60.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ice:wpaper:wp34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Central Bank of Iceland (email available below). General contact details of provider: https://edirc.repec.org/data/sedgvis.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.