IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Bayesian curve estimation by model averaging

Listed author(s):
  • Redondas, María Dolores
  • Peña, Daniel
Registered author(s):

    A bayesian approach is used to estimate a nonparametric regression model. The main features of the procedure are, first, the functional form of the curve is approximated by a mixture of local polynomials by Bayesian Model Averaging (BMA); second, the model weights are approximated by the BIC criterion, and third, a robust estimation procedure is incorporated to improve the smoothness of the estimated curve. The models considered at each sample points are polynomial regression models of order smaller that four, and the parameters of each model are estimated by a local window. The estimated value is computed by BMA, and the posterior probability of each model is approximated by the exponential of the BIC criterion. The robustness is achieved by assuming that the noise follows a scale contaminated normal model so that the effect of possible outliers is downweighted. The procedure provides a smooth curve and allows a straightforward prediction and quantification of the uncertainty. The method is illustrated with several examples and some Monte Carlo experiments.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Universidad Carlos III de Madrid. Departamento de Estadística in its series DES - Working Papers. Statistics and Econometrics. WS with number ws034410.

    in new window

    Date of creation: Sep 2003
    Handle: RePEc:cte:wsrepe:ws034410
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    2. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws034410. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.