IDEAS home Printed from https://ideas.repec.org/p/iae/iaewps/wp2019n12.html

Implications of Partial Information for Applied Macroeconomic Modelling

Author

Listed:
  • Adrian Pagan

    (School of Economics, University of Sydney, CAMA, Australian National University)

  • Tim Robinson

    (Melbourne Institute: Applied Economic & Social Research, The University of Melbourne)

Abstract

Implications of partial information for applied macroeconomic modelling along four dimensions are shown, and analysis provided on how they can be addressed. First, when permanent shocks are present a Vector Error-Correction Model including latent, as well as observed, variables is required to capture macroeconomic dynamics. Second, the assumption in Dynamic Stochastic General Equilibrium models that shocks are autocorrelated provides identifying information usable in Structural Vector AutoRe-gressions. Third, estimating models with more shocks than observed variables must yield correlated estimated structural shocks. Fourth, including measurement error, as commonly specified, implies a lack of co-integration between variables, even when actually present

Suggested Citation

  • Adrian Pagan & Tim Robinson, 2019. "Implications of Partial Information for Applied Macroeconomic Modelling," Melbourne Institute Working Paper Series wp2019n12, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
  • Handle: RePEc:iae:iaewps:wp2019n12
    as

    Download full text from publisher

    File URL: https://melbourneinstitute.unimelb.edu.au/__data/assets/pdf_file/0006/3202629/wp2019n12.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hendry, David F & Mizon, Grayham E, 1978. "Serial Correlation as a Convenient Simplification, not a Nuisance: A Comment on a Study of the Demand for Money by the Bank of England," Economic Journal, Royal Economic Society, vol. 88(351), pages 549-563, September.
    2. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    3. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    4. Fabio Canova & Filippo Ferroni, 2022. "Mind the Gap! Stylized Dynamic Facts and Structural Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(4), pages 104-135, October.
    5. Xianglong Liu & Adrian R. Pagan & Tim Robinson, 2018. "Critically Assessing Estimated DSGE Models: A Case Study of a Multi‐sector Model," The Economic Record, The Economic Society of Australia, vol. 94(307), pages 349-371, December.
    6. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    7. Pablo A. Guerron-Quintana, 2010. "What you match does matter: the effects of data on DSGE estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 774-804.
    8. Adrian Pagan, 2017. "Some Consequences of Using "Measurement Error Shocks" When Estimating Time Series Models," CAMA Working Papers 2017-12, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    9. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    10. D. S. Poskitt & Wenying Yao, 2017. "Vector Autoregressions and Macroeconomic Modeling: An Error Taxonomy," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 407-419, July.
    11. Nimark, Kristoffer P., 2015. "A low dimensional Kalman filter for systems with lagged states in the measurement equation," Economics Letters, Elsevier, vol. 127(C), pages 10-13.
    12. Kapetanios, G. & Pagan, A. & Scott, A., 2007. "Making a match: Combining theory and evidence in policy-oriented macroeconomic modeling," Journal of Econometrics, Elsevier, vol. 136(2), pages 565-594, February.
    13. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pagan, Adrian & Robinson, Tim, 2022. "Excess shocks can limit the economic interpretation," European Economic Review, Elsevier, vol. 145(C).
    2. Wickens, Michael R. & Pagan, Adrian, 2019. "Checking if the Straitjacket Fits," CEPR Discussion Papers 14140, C.E.P.R. Discussion Papers.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    2. Adrian Pagan & Tim Robinson, 2020. "Too many shocks spoil the interpretation," CAMA Working Papers 2020-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Wickens, Michael R. & Pagan, Adrian, 2019. "Checking if the Straitjacket Fits," CEPR Discussion Papers 14140, C.E.P.R. Discussion Papers.
    4. Mertens, Elmar, 2012. "Are spectral estimators useful for long-run restrictions in SVARs?," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1831-1844.
    5. Adrian Pagan & Tim Robinson, 2016. "Investigating the Relationship Between DSGE and SVAR Models," NCER Working Paper Series 112, National Centre for Econometric Research.
    6. Yao, Wenying & Kam, Timothy & Vahid, Farshid, 2014. "VAR(MA), what is it good for? more bad news for reduced-form estimation and inference," Working Papers 2014-14, University of Tasmania, Tasmanian School of Business and Economics.
    7. Soccorsi, Stefano, 2016. "Measuring nonfundamentalness for structural VARs," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 86-101.
    8. Pagan, Adrian & Robinson, Tim, 2022. "Excess shocks can limit the economic interpretation," European Economic Review, Elsevier, vol. 145(C).
    9. Franchi, Massimo & Vidotto, Anna, 2013. "A check for finite order VAR representations of DSGE models," Economics Letters, Elsevier, vol. 120(1), pages 100-103.
    10. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Dées, Stephane & Zimic, Srečko, 2019. "Animal spirits, fundamental factors and business cycle fluctuations," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    12. Fabio Canova & Filippo Ferroni, 2022. "Mind the Gap! Stylized Dynamic Facts and Structural Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(4), pages 104-135, October.
    13. Poskitt, D.S., 2016. "Vector autoregressive moving average identification for macroeconomic modeling: A new methodology," Journal of Econometrics, Elsevier, vol. 192(2), pages 468-484.
    14. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    15. Luca Sala & Luca Gambetti & Mario Forni, 2016. "VAR Information and the Empirical Validation of DSGE Models," 2016 Meeting Papers 260, Society for Economic Dynamics.
    16. Philip Liu & Konstantinos Theodoridis, 2012. "DSGE Model Restrictions for Structural VAR Identification," International Journal of Central Banking, International Journal of Central Banking, vol. 8(4), pages 61-95, December.
    17. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    18. Yao, Wenying & Kam, Timothy & Vahid, Farshid, 2017. "On weak identification in structural VARMA models," Economics Letters, Elsevier, vol. 156(C), pages 1-6.
    19. Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
    20. Angelini, Giovanni, 2020. "Bootstrap lag selection in DSGE models with expectations correction," Econometrics and Statistics, Elsevier, vol. 14(C), pages 38-48.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iae:iaewps:wp2019n12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sheri Carnegie (email available below). General contact details of provider: https://edirc.repec.org/data/mimelau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.