IDEAS home Printed from https://ideas.repec.org/p/hst/ghsdps/gd08-033.html
   My bibliography  Save this paper

An Optimal Weight for Realized Variance Based on Intermittent High-Frequency Data

Author

Listed:
  • Hiroki Masuda
  • Takayuki Morimoto

Abstract

In Japanese stock markets, there are two kinds of breaks, i.e., nighttime and lunch break, where we have no trading, entailing inevitable increase of variance in estimating daily volatility via naive realized variance (RV). In order to perform a much more stabilized estimation, we are concerned here with a modification of the weighting technique of Hansen and Lunde (2005). As an empirical study, we estimate optimal weights in a certain sense for Japanese stock data listed on the Tokyo Stock Exchange. We found that, in most stocks appropriate use of the optimally weighted RV can lead to remarkably smaller estimation variance compared with naive RV, hence substantially to more accurate forecasting of daily volatility.

Suggested Citation

  • Hiroki Masuda & Takayuki Morimoto, 2009. "An Optimal Weight for Realized Variance Based on Intermittent High-Frequency Data," Global COE Hi-Stat Discussion Paper Series gd08-033, Institute of Economic Research, Hitotsubashi University.
  • Handle: RePEc:hst:ghsdps:gd08-033
    as

    Download full text from publisher

    File URL: http://gcoe.ier.hit-u.ac.jp/research/discussion/2008/pdf/gd08-033.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Gallo, Giampiero M, 2001. "Modelling the Impact of Overnight Surprises on Intra-Daily Volatility," Australian Economic Papers, Wiley Blackwell, vol. 40(4), pages 567-580, December.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    4. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(01), pages 109-126, March.
    5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    6. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    8. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    10. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 525-554.
    11. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    high-frequency data; market microstructure noise; realized volatility; Japanese stock markets; variance of realized variance;

    JEL classification:

    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hst:ghsdps:gd08-033. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tatsuji Makino). General contact details of provider: http://edirc.repec.org/data/iehitjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.