IDEAS home Printed from
   My bibliography  Save this paper

The Role of the Forest in Climate Policy


  • Eriksson, Mathilda

    () (Department of Economics, Umeå University)


This thesis consists of an introductory part and four papers related to the optimal use of forest as a mitigation strategy. In Paper [I], I develop the FOR-DICE model to analyze optimal global forest carbon management. The FOR-DICE is a simple framework for assessing the role of the boreal, tropical, and temperate forests as both a source of renewable energy and a resource to sequester and store carbon. I find that forests play an important role in reducing global emissions, especially under ambitious climate targets. At the global level, efforts should focus on increasing the stock of forest biomass rather than increasing the use of the forest for bioenergy production. The results also highlight the important role of reducing tropical deforestation to reduce climate change. In Paper [II], I develop the FRICE to investigate the role of two key efforts to increase the stock of forest biomass, namely, afforestation and avoided deforestation. FRICE is a multi-regional integrated assessment model that captures the dynamics of forest carbon sequestration in a transparent way and allows me to investigate the allocation of these actions across space and time. I find that global climate policy can benefit considerably from afforestation and avoided deforestation in tropical regions, and in particular in Africa. Avoided deforestation is particularly effective in the short run while afforestation provides the largest emissions reductions in the medium run. This paper also highlights the importance of not solely relying on avoided deforestation as its capacity to reduce emissions is more limited than afforestation, especially under more stringent temperature targets. In Paper [III], we investigate how uncertainties linked to the forest affect the optimal climate policy. We incorporate parameter uncertainty on the intrinsic growth rate and climate effects on the forest by using the state-contingent approach. Our results show that forest uncertainty matters. We find that the importance of including forest in climate policy increases when the forest is subject to uncertainty. This occurs because optimal forest response allows us to reduce the costs associated with uncertainty. In Paper [IV], we explore the implications of asymmetries in climate policy arising from not recognizing forest carbon emissions and sequestration in the decision-making process. We show that not fully including carbon values associated with the forest will have large effects on different forest controls and lead to an increase in emissions, higher carbon prices, and lower welfare. We further find, by investigating the relative importance of forest emissions compared to sequestration, that recognizing forest emissions from bioenergy and deforestation is especially important for climate policy.

Suggested Citation

  • Eriksson, Mathilda, 2016. "The Role of the Forest in Climate Policy," Umeå Economic Studies 927, Umeå University, Department of Economics.
  • Handle: RePEc:hhs:umnees:0927

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Lecocq, Franck & Caurla, Sylvain & Delacote, Philippe & Barkaoui, Ahmed & Sauquet, Alexandre, 2011. "Paying for forest carbon or stimulating fuelwood demand? Insights from the French Forest Sector Model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 157-168, April.
    2. Lundgren, Tommy & Marklund, Per-Olov & Brannlund, Runar & Kristrom, Bengt, 2008. "The Economics of Biofuels," International Review of Environmental and Resource Economics, now publishers, vol. 2(3), pages 237-280, November.
    3. Brännlund, Runar & Kriström, Bengt & Lundgren, Tommy & Marklund, Per-Olov, 2008. "The Economics of Biofuels," Umeå Economic Studies 736, Umeå University, Department of Economics.
    4. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    Full references (including those not matched with items on IDEAS)

    More about this item


    climate change; integrated assessment; forest carbon sequestration; forest bioenergy; avoided deforestation; afforestation; uncertainty; dynamic modeling; DICE; RICE;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:umnees:0927. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Skog). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.