Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- repec:cup:cbooks:9781108422536 is not listed on IDEAS
- Helmut Lütkepohl & Fang Xu, 2012.
"The role of the log transformation in forecasting economic variables,"
Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
- Helmut Lütkepohl & Fang Xu, 2009. "The Role of the Log Transformation in Forecasting Economic Variables," CESifo Working Paper Series 2591, CESifo.
- Mei, Jianping & Gao, Bin, 1995. "Price Reversal, Transaction Costs, and Arbitrage Profits in the Real Estate Securities Market," The Journal of Real Estate Finance and Economics, Springer, vol. 11(2), pages 153-165, September.
- Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
- Robert T. Kleiman & James E. Payne & Anandi P. Sahu, 2002.
"Random Walks and Market Efficiency: Evidence from International Real Estate Markets,"
Journal of Real Estate Research, American Real Estate Society, vol. 24(3), pages 279-298.
- Robert Kleiman & James Payne & Anandi Sahu, 2002. "Random Walks and Market Efficiency: Evidence from International Real Estate Markets," Journal of Real Estate Research, Taylor & Francis Journals, vol. 24(3), pages 279-298, January.
- Ming-Long Lee & Kevin C.H. Chiang, 2004. "Substitutability between Equity REITs and Mortgage REITs," Journal of Real Estate Research, American Real Estate Society, vol. 26(1), pages 95-114.
- Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
- Simon Stevenson, 2002. "Momentum Effects and Mean Reversion in Real Estate Securities," Journal of Real Estate Research, American Real Estate Society, vol. 23(1/2), pages 47-64.
- Su, Jen-Je & Cheung, Adrian (Wai-Kong) & Roca, Eduardo, 2012. "Are securitised real estate markets efficient?," Economic Modelling, Elsevier, vol. 29(3), pages 684-690.
- Brooks,Chris, 2019. "Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9781108436823, December.
- E. Hui & J. Wright & S. Yam, 2014. "Calendar Effects and Real Estate Securities," The Journal of Real Estate Finance and Economics, Springer, vol. 49(1), pages 91-115, July.
- Klaus Grobys & James W. Kolari & Joachim Niang, 2022. "Man versus machine: on artificial intelligence and hedge funds performance," Applied Economics, Taylor & Francis Journals, vol. 54(40), pages 4632-4646, August.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
- Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
- J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Geoffrey M. Ngene & Catherine Anitha Manohar & Ivan F. Julio, 2020. "Overreaction in the REITs Market: New Evidence from Quantile Autoregression Approach," JRFM, MDPI, vol. 13(11), pages 1-28, November.
- Felix Schindler, 2013. "Predictability and Persistence of the Price Movements of the S&P/Case-Shiller House Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(1), pages 44-90, January.
- Kyriakou, Maria I. & Babalos, Vassilios & Kiohos, Apostolos & Koulakiotis, Athanasios, 2020. "Feedback trading strategies and long-term volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 181-189.
- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Felix Schindler, 2014. "Persistence and Predictability in UK House Price Movements," The Journal of Real Estate Finance and Economics, Springer, vol. 48(1), pages 132-163, January.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Werner Kristjanpoller & Kevin Michell & Cristian Llanos & Marcel C. Minutolo, 2025. "Incorporating causal notions to forecasting time series: a case study," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-22, December.
- Sang Il Lee & Seong Joon Yoo, 2019. "Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets," Papers 1903.06478, arXiv.org, revised Sep 2019.
- Li, Weiping & Mei, Feng, 2020. "Asset returns in deep learning methods: An empirical analysis on SSE 50 and CSI 300," Research in International Business and Finance, Elsevier, vol. 54(C).
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
- Minye Zhang & Yongheng Deng, 2008. "REITs Return Behavior and Legal Infrastructure: The 1993 Revenue Reconciliation Act & Inspirations for China's Emerging REITS Market," Working Paper 8532, USC Lusk Center for Real Estate.
- Oluwasegun B. Adekoya & Gabriel O. Oduyemi & Johnson A. Oliyide, 2021. "Price and volatility persistence of the US REITs market," Future Business Journal, Springer, vol. 7(1), pages 1-10, December.
- Paul Bilokon & Yitao Qiu, 2023. "Transformers versus LSTMs for electronic trading," Papers 2309.11400, arXiv.org.
- Zhang, Yanyi & De Smedt, Johannes, 2024. "Index tracking using shapley additive explanations and one-dimensional pointwise convolutional autoencoders," International Review of Financial Analysis, Elsevier, vol. 95(PC).
- Ben Moews & Gbenga Ibikunle, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Papers 2002.10385, arXiv.org.
- Ghysels, Eric & Plazzi, Alberto & Valkanov, Rossen & Torous, Walter, 2013. "Forecasting Real Estate Prices," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 509-580, Elsevier.
- Evangelos Vasileiou, 2022. "Inaccurate Value at Risk Estimations: Bad Modeling or Inappropriate Data?," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1155-1171, March.
- Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
- Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
More about this item
Keywords
Forecasting; Equity REITs; deep learning; LSTM; ARIMA;All these keywords.
JEL classification:
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G19 - Financial Economics - - General Financial Markets - - - Other
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-10-23 (Big Data)
- NEP-CMP-2023-10-23 (Computational Economics)
- NEP-FOR-2023-10-23 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:kthrec:2023_010. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cecilia Hermansson (email available below). General contact details of provider: https://edirc.repec.org/data/ifkthse.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.