Is attention truly all we need? An empirical study of asset pricing in pretrained RNN sparse and global attention models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Luyang Chen & Markus Pelger & Jason Zhu, 2024.
"Deep Learning in Asset Pricing,"
Management Science, INFORMS, vol. 70(2), pages 714-750, February.
- Luyang Chen & Markus Pelger & Jason Zhu, 2019. "Deep Learning in Asset Pricing," Papers 1904.00745, arXiv.org, revised Aug 2021.
- Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019.
"Characteristics are covariances: A unified model of risk and return,"
Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
- Bryan Kelly & Seth Pruitt & Yinan Su, 2018. "Characteristics Are Covariances: A Unified Model of Risk and Return," NBER Working Papers 24540, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Kewei Hou & Chen Xue & Lu Zhang, 2015. "Editor's Choice Digesting Anomalies: An Investment Approach," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 650-705.
- Ma, Tian & Wang, Wanwan & Chen, Yu, 2023. "Attention is all you need: An interpretable transformer-based asset allocation approach," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Bryan T. Kelly & Boris Kuznetsov & Semyon Malamud & Teng Andrea Xu, 2025. "Artificial Intelligence Asset Pricing Models," Swiss Finance Institute Research Paper Series 25-08, Swiss Finance Institute.
- Bartosz Bieganowski & Robert Slepaczuk, 2024.
"Supervised Autoencoder MLP for Financial Time Series Forecasting,"
Papers
2404.01866, arXiv.org, revised Jun 2024.
- Bartosz Bieganowski & Robert Ślepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Working Papers 2024-03, Faculty of Economic Sciences, University of Warsaw.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Lin William Cong & Ke Tang & Jingyuan Wang & Yang Zhang, 2021. "Deep Sequence Modeling: Development and Applications in Asset Pricing," Papers 2108.08999, arXiv.org.
- Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
- Shanyan Lai, 2025. "Multilayer Perceptron Neural Network Models in Asset Pricing: An Empirical Study on Large-Cap US Stocks," Papers 2505.01921, arXiv.org, revised May 2025.
- Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
- Bryan T. Kelly & Boris Kuznetsov & Semyon Malamud & Teng Andrea Xu, 2025. "Artificial Intelligence Asset Pricing Models," NBER Working Papers 33351, National Bureau of Economic Research, Inc.
- James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
- Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
- Guillaume Coqueret & Tony Guida, 2020. "Machine Learning for Factor Investing : R version," Post-Print hal-03188226, HAL.
- J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shanyan Lai, 2025. "Multilayer Perceptron Neural Network Models in Asset Pricing: An Empirical Study on Large-Cap US Stocks," Papers 2505.01921, arXiv.org, revised May 2025.
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Wu, Hongxu & Wang, Qiao & Li, Jianping & Deng, Zhibin, 2025. "Enhancing stock return prediction in the Chinese market: A GAN-based approach," Research in International Business and Finance, Elsevier, vol. 75(C).
- Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
- Shanyan Lai, 2025. "Asset Pricing in Pre-trained Transformer," Papers 2505.01575, arXiv.org, revised May 2025.
- Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
- Avramov, D. & Ge, S. & Li, S. & Linton, O. B., 2025. "Dual Industry Effects and Cross-Stock Predictability," Janeway Institute Working Papers 2506, Faculty of Economics, University of Cambridge.
- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
- Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Jinghai He & Cheng Hua & Chunyang Zhou & Zeyu Zheng, 2025. "Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information," Papers 2501.17992, arXiv.org.
- Matteo Bagnara, 2024. "Asset Pricing and Machine Learning: A critical review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 27-56, February.
- Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
- Fieberg, Christian & Liedtke, Gerrit & Zaremba, Adam & Cakici, Nusret, 2025. "A factor model for the cross-section of country equity risk premia," Journal of Banking & Finance, Elsevier, vol. 171(C).
- Mykola Babiak & Jozef Barunik, 2020.
"Deep Learning, Predictability, and Optimal Portfolio Returns,"
CERGE-EI Working Papers
wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
- Avramov, D. & Ge, S. & Li, S. & Linton, O. B., 2025. "Dual Industry Effects and Cross-Stock Predictability," Cambridge Working Papers in Economics 2512, Faculty of Economics, University of Cambridge.
- Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
- Mao, Jie & Shao, Jingjing & Wang, Weiguan, 2025. "Risk premium principal components for the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 89(C).
- Christian Fieberg & Gerrit Liedtke & Thorsten Poddig, 2025. "Recurrent double-conditional factor model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(1), pages 205-254, March.
- Haixiang Yao & Shenghao Xia & Hao Liu, 2024. "Return predictability via an long short‐term memory‐based cross‐section factor model: Evidence from Chinese stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1770-1794, September.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-09-08 (Big Data)
- NEP-CMP-2025-09-08 (Computational Economics)
- NEP-FMK-2025-09-08 (Financial Markets)
- NEP-MAC-2025-09-08 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.19006. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.