IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v75y2025ics0275531925000169.html
   My bibliography  Save this article

Enhancing stock return prediction in the Chinese market: A GAN-based approach

Author

Listed:
  • Wu, Hongxu
  • Wang, Qiao
  • Li, Jianping
  • Deng, Zhibin

Abstract

With the rapid advancement of machine learning technologies, the accuracy of predictive models has seen continuous improvement. In this paper, we aim to apply machine learning models to predict stock market returns and implement factor investment in the Chinese A-share market. We propose a novel GAN model integrating LSTM, attention mechanisms, and CNN to address time-dependence issues and low signal-to-noise ratios more effectively in stock return prediction. Out-of-sample results demonstrate that the proposed GAN model outperforms other benchmark models in terms of predictive performance and exhibits superior generalization capabilities. Furthermore, our analysis of predictor importance highlights the pivotal role of transaction and profitability metrics in predicting returns in the Chinese A-share market. Additionally, when incorporating macroeconomic predictors into the training data, our model demonstrates stability amidst macroeconomic fluctuations. These empirical findings underscore the potential value of the proposed GAN model in the Chinese stock market investment.

Suggested Citation

  • Wu, Hongxu & Wang, Qiao & Li, Jianping & Deng, Zhibin, 2025. "Enhancing stock return prediction in the Chinese market: A GAN-based approach," Research in International Business and Finance, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:riibaf:v:75:y:2025:i:c:s0275531925000169
    DOI: 10.1016/j.ribaf.2025.102760
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531925000169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2025.102760?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Novy-Marx, Robert, 2013. "The other side of value: The gross profitability premium," Journal of Financial Economics, Elsevier, vol. 108(1), pages 1-28.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    5. Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
    6. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    7. Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
    8. Kent Daniel & David Hirshleifer & Lin Sun, 2020. "Short- and Long-Horizon Behavioral Factors," The Review of Financial Studies, Society for Financial Studies, vol. 33(4), pages 1673-1736.
    9. Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    12. Franklin Allen & Jun (Qj) Qian & Chenyu Shan & Julie Lei Zhu, 2024. "Dissecting the Long‐Term Performance of the Chinese Stock Market," Journal of Finance, American Finance Association, vol. 79(2), pages 993-1054, April.
    13. Tidor-Vlad Pricope, 2021. "Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review," Papers 2106.00123, arXiv.org.
    14. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    15. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    16. Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
    17. Kent Daniel & David Hirshleifer & Lin Sun, 2020. "Short- and Long-Horizon Behavioral Factors," Review of Finance, European Finance Association, vol. 33(4), pages 1673-1736.
    18. Martin Lettau & Markus Pelger, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," Review of Finance, European Finance Association, vol. 33(5), pages 2274-2325.
    19. Li, Weiping & Mei, Feng, 2020. "Asset returns in deep learning methods: An empirical analysis on SSE 50 and CSI 300," Research in International Business and Finance, Elsevier, vol. 54(C).
    20. Kewei Hou & Chen Xue & Lu Zhang, 2015. "Editor's Choice Digesting Anomalies: An Investment Approach," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 650-705.
    21. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    22. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    23. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    24. Walter Pohl & Karl Schmedders & Ole Wilms, 2018. "Higher Order Effects in Asset Pricing Models with Long‐Run Risks," Journal of Finance, American Finance Association, vol. 73(3), pages 1061-1111, June.
    25. Jia Li & Zhipeng Liao & Rogier Quaedvlieg, 2022. "Conditional Superior Predictive Ability," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(2), pages 843-875.
    26. Feng, Guanhao & He, Jingyu & Polson, Nicholas G. & Xu, Jianeng, 2024. "Deep Learning in Characteristics-Sorted Factor Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 59(7), pages 3001-3036, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    2. Bryzgalova, Svetlana & Huang, Jiantao & Julliard, Christian, 2023. "Bayesian solutions for the factor zoo: we just ran two quadrillion models," LSE Research Online Documents on Economics 126151, London School of Economics and Political Science, LSE Library.
    3. Fieberg, Christian & Liedtke, Gerrit & Zaremba, Adam & Cakici, Nusret, 2025. "A factor model for the cross-section of country equity risk premia," Journal of Banking & Finance, Elsevier, vol. 171(C).
    4. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    5. Mao, Jie & Shao, Jingjing & Wang, Weiguan, 2025. "Risk premium principal components for the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 89(C).
    6. Wang, Chuyu & Zhang, Guanglong, 2025. "In the shadows of opacity: Firm information quality and latent factor model performance," International Review of Financial Analysis, Elsevier, vol. 100(C).
    7. Baba-Yara, Fahiz & Boons, Martijn & Tamoni, Andrea, 2024. "Persistent and transitory components of firm characteristics: Implications for asset pricing," Journal of Financial Economics, Elsevier, vol. 154(C).
    8. Wang, Jinzhe & Zhu, Yifeng, 2024. "A comparison of factor models in China," Journal of Empirical Finance, Elsevier, vol. 79(C).
    9. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    10. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    11. Cong, Lin William & Feng, Guanhao & He, Jingyu & He, Xin, 2025. "Growing the efficient frontier on panel trees," Journal of Financial Economics, Elsevier, vol. 167(C).
    12. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    13. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
    14. Sak, Halis & Huang, Tao & Chng, Michael T., 2024. "Exploring the factor zoo with a machine-learning portfolio," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    15. Cong Wang, 2024. "Stock return prediction with multiple measures using neural network models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
    16. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
    17. Lin William Cong & Guanhao Feng & Jingyu He & Xin He, 2022. "Growing the Efficient Frontier on Panel Trees," NBER Working Papers 30805, National Bureau of Economic Research, Inc.
    18. Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
    19. Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
    20. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:75:y:2025:i:c:s0275531925000169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.