IDEAS home Printed from https://ideas.repec.org/p/hhs/ifauwp/2001_009.html
   My bibliography  Save this paper

Testing exogeneity under distributional misspecification

Author

Listed:

Abstract

We propose a general test for exogeneity that is robust against distributional misspecification. The test can also be used to identify other types of misspecifications, such as the presence of a random coefficient. The idea is to sort the data with respect to a variable (a sorting score) and then split the sample into two parts. Using a Chow test, it can then be tested whether estimated parameters in the two sub-samples are different. We give conditions under which it is possible to test for exogeneity by using the (supposedly) endogenous variable as a sorting score. The resulting test does not need instrumental variables. Evidence from a Monte Carlo study and an empirical application suggets that the test can be useful for practitioners.

Suggested Citation

  • de Luna, Xavier & Johansson, Per, 2001. "Testing exogeneity under distributional misspecification," Working Paper Series 2001:9, IFAU - Institute for Evaluation of Labour Market and Education Policy.
  • Handle: RePEc:hhs:ifauwp:2001_009
    as

    Download full text from publisher

    File URL: http://www.ifau.se/upload/pdf/se/2001/wp01-9.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Vella, Francis, 1993. "A Simple Estimator for Simultaneous Models with Censored Endogenous Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 34(2), pages 441-457, May.
    2. Smith, Richard J & Blundell, Richard W, 1986. "An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply," Econometrica, Econometric Society, vol. 54(3), pages 679-685, May.
    3. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    4. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    5. Shapiro, Carl & Stiglitz, Joseph E, 1984. "Equilibrium Unemployment as a Worker Discipline Device," American Economic Review, American Economic Association, vol. 74(3), pages 433-444, June.
    6. Weiss, Andrew, 1985. "Absenteeism and wages," Economics Letters, Elsevier, vol. 19(3), pages 277-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Luna, Xavier & Johansson, Per, 2006. "Exogeneity in structural equation models," Journal of Econometrics, Elsevier, vol. 132(2), pages 527-543, June.

    More about this item

    Keywords

    Absenteeism at work; endogeneity; linear exponential family; random effect; random coefficient; selectivity;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ifauwp:2001_009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ali Ghooloo). General contact details of provider: http://edirc.repec.org/data/ifagvse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.