IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01381379.html
   My bibliography  Save this paper

A strategic implementation of the sequential equal surplus division rule for digraph cooperative games

Author

Listed:
  • Sylvain Béal

    () (CRESE - Centre de REcherches sur les Stratégies Economiques (EA 3190) - UBFC - Université Bourgogne Franche-Comté [COMUE] - UFC - Université de Franche-Comté, LCE - Laboratoire Chrono-environnement - UFC (UMR 6249) - UBFC - Université Bourgogne Franche-Comté [COMUE] - CNRS - Centre National de la Recherche Scientifique - UFC - Université de Franche-Comté)

  • Eric Rémila

    (GATE Lyon Saint-Étienne - Groupe d'analyse et de théorie économique - ENS Lyon - École normale supérieure - Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet [Saint-Étienne] - Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'analyse et de théorie économique - ENS Lyon - École normale supérieure - Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet [Saint-Étienne] - Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

Abstract

We provide a strategic implementation of the sequential equal surplus division rule (Béal et al. in Theory Decis 79:251–283, 2015). Precisely, we design a non-cooperative mechanism of which the unique subgame perfect equilibrium payoffs correspond to the sequential equal surplus division outcome of a superadditive rooted tree TU-game. This mechanism borrowed from the bidding mechanism designed by Pérez-Castrillo and Wettstein (J Econ Theory 100:274–294, 2001), but takes into account the direction of the edges connecting any two players in the rooted tree, which reflects some dominance relation between them. Our proofs rely on interesting properties that we provide for a general class of bidding mechanisms.

Suggested Citation

  • Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "A strategic implementation of the sequential equal surplus division rule for digraph cooperative games," Post-Print halshs-01381379, HAL.
  • Handle: RePEc:hal:journl:halshs-01381379
    DOI: 10.1007/s10479-016-2290-5
    Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-01381379
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Juan Vidal-Puga, 2005. "Implementation of the Levels Structure Value," Annals of Operations Research, Springer, vol. 137(1), pages 191-209, July.
    2. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    3. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    4. Haller, Hans, 1994. "Collusion Properties of Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 261-281.
    5. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
    6. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    7. Ju, Yuan, 2012. "Reject and renegotiate: The Shapley value in multilateral bargaining," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 431-436.
    8. Perez-Castrillo, David & Wettstein, David, 2005. "Forming efficient networks," Economics Letters, Elsevier, vol. 87(1), pages 83-87, April.
    9. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    10. Slikker, Marco, 2007. "Bidding for surplus in network allocation problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 493-511, November.
    11. Yuan Ju & David Wettstein, 2009. "Implementing cooperative solution concepts: a generalized bidding approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(2), pages 307-330, May.
    12. Aadland, David & Kolpin, Van, 1998. "Shared irrigation costs: An empirical and axiomatic analysis," Mathematical Social Sciences, Elsevier, vol. 35(2), pages 203-218, March.
    13. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:matsoc:v:93:y:2018:i:c:p:132-140 is not listed on IDEAS
    2. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "Axiomatization of an allocation rule for ordered tree TU-games," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 132-140.

    More about this item

    Keywords

    TU-games ; Sequential equal surplus division; Bidding approach ; ‘Take-it-or-leave-it’ procedure ; Implementation ; Rooted tree;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01381379. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.