IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v253y2017i1d10.1007_s10479-016-2290-5.html
   My bibliography  Save this article

A strategic implementation of the sequential equal surplus division rule for digraph cooperative games

Author

Listed:
  • Sylvain Béal

    () (Univ. Bourgogne Franche-Comté)

  • Eric Rémila

    () (Université de Saint-Etienne)

  • Philippe Solal

    () (Université de Saint-Etienne)

Abstract

Abstract We provide a strategic implementation of the sequential equal surplus division rule (Béal et al. in Theory Decis 79:251–283, 2015). Precisely, we design a non-cooperative mechanism of which the unique subgame perfect equilibrium payoffs correspond to the sequential equal surplus division outcome of a superadditive rooted tree TU-game. This mechanism borrowed from the bidding mechanism designed by Pérez-Castrillo and Wettstein (J Econ Theory 100:274–294, 2001), but takes into account the direction of the edges connecting any two players in the rooted tree, which reflects some dominance relation between them. Our proofs rely on interesting properties that we provide for a general class of bidding mechanisms.

Suggested Citation

  • Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "A strategic implementation of the sequential equal surplus division rule for digraph cooperative games," Annals of Operations Research, Springer, vol. 253(1), pages 43-59, June.
  • Handle: RePEc:spr:annopr:v:253:y:2017:i:1:d:10.1007_s10479-016-2290-5
    DOI: 10.1007/s10479-016-2290-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2290-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Juan Vidal-Puga, 2005. "Implementation of the Levels Structure Value," Annals of Operations Research, Springer, vol. 137(1), pages 191-209, July.
    2. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    3. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    4. Haller, Hans, 1994. "Collusion Properties of Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 261-281.
    5. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
    6. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    7. Ju, Yuan, 2012. "Reject and renegotiate: The Shapley value in multilateral bargaining," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 431-436.
    8. Perez-Castrillo, David & Wettstein, David, 2005. "Forming efficient networks," Economics Letters, Elsevier, vol. 87(1), pages 83-87, April.
    9. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    10. Slikker, Marco, 2007. "Bidding for surplus in network allocation problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 493-511, November.
    11. Yuan Ju & David Wettstein, 2009. "Implementing cooperative solution concepts: a generalized bidding approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(2), pages 307-330, May.
    12. Aadland, David & Kolpin, Van, 1998. "Shared irrigation costs: An empirical and axiomatic analysis," Mathematical Social Sciences, Elsevier, vol. 35(2), pages 203-218, March.
    13. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bidding approach; ‘Take-it-or-leave-it’ procedure; Implementation; Rooted tree TU-games; Sequential equal surplus division;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:253:y:2017:i:1:d:10.1007_s10479-016-2290-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.