IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05461433.html

Organizational learning for exploring Generative AI: CORE-sandbox experiments

Author

Listed:
  • Dov Te’eni

    (TAU - Tel Aviv University)

  • Myriam Raymond

    (LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - Nantes Univ - IAE Nantes - Nantes Université - Institut d'Administration des Entreprises - Nantes - Nantes Université - pôle Sociétés - Nantes Univ - Nantes Université, GRANEM - Groupe de Recherche Angevin en Economie et Management - UA - Université d'Angers - Institut Agro Rennes Angers - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement)

  • Frantz Rowe

    (LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - Nantes Univ - IAE Nantes - Nantes Université - Institut d'Administration des Entreprises - Nantes - Nantes Université - pôle Sociétés - Nantes Univ - Nantes Université, IUF - Institut universitaire de France - M.E.N.E.S.R. - Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche)

  • Etienne Thénoz

    (LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - Nantes Univ - IAE Nantes - Nantes Université - Institut d'Administration des Entreprises - Nantes - Nantes Université - pôle Sociétés - Nantes Univ - Nantes Université)

  • Philippe Trimborn

Abstract

Generative AI (GenAI) holds potential for organizations, offering transformative opportunities while simultaneously raising concerns about its associated risks. Like many emerging technologies, GenAI presents organizations with a significant challenge: navigating uncertainty before making large-scale decisions about which systems to adopt and how to implement and leverage them. Managers cannot rely solely on general knowledge of GenAI; they require insights tailored to their specific organizational context. Drawing on an 18-month study of sandbox experiments conducted within a large international service organization, this paper presents CORE-sandbox experiments as a structured framework for systematically learning about the critical dimensions of uncertainty surrounding GenAI. The framework organizes learning into four key domains: Capabilities, Opportunities, Risks, and Ecosystem. The paper also advances the discourse on organizational learning and dynamic capabilities by demonstrating how in-situ and ex-situ learning cycles reinforce one another and how second and third-order organizational learning emerge under conditions of high uncertainty before GenAI rollout decisions are made.

Suggested Citation

  • Dov Te’eni & Myriam Raymond & Frantz Rowe & Etienne Thénoz & Philippe Trimborn, 2026. "Organizational learning for exploring Generative AI: CORE-sandbox experiments," Post-Print hal-05461433, HAL.
  • Handle: RePEc:hal:journl:hal-05461433
    DOI: 10.1016/j.ijinfomgt.2026.103029
    Note: View the original document on HAL open archive server: https://nantes-universite.hal.science/hal-05461433v1
    as

    Download full text from publisher

    File URL: https://nantes-universite.hal.science/hal-05461433v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2026.103029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05461433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.