IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04995261.html
   My bibliography  Save this paper

A forecasting model for desert locust presence during recession period, using real-time satellite imagery

Author

Listed:
  • Lucile Marescot

    (UMR CBGP - Centre de Biologie pour la Gestion des Populations - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - IRD [Occitanie] - Institut de Recherche pour le Développement - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement - UM - Université de Montpellier, Cirad-BIOS - Département Systèmes Biologiques - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement)

  • Elodie Fernandez

    (UMR CBGP - Centre de Biologie pour la Gestion des Populations - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - IRD [Occitanie] - Institut de Recherche pour le Développement - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement - UM - Université de Montpellier)

  • Hichem Dridi

    (FAO - Food and Agriculture Organization of the United Nations, Regional Office for the Near East and North Africa - FAO - Food and Agriculture Organization of the United Nations [Rome, Italie], CLCPRO - Commission de Lutte Contre le Criquet Pèlerin en Région Occidentale)

  • Ahmed Salem Benahi

    (CNLA - Centre National de Lutte Antiacridienne)

  • Mohamed Lemine Hamouny

    (FAO - Food and Agriculture Organization of the United Nations, Regional Office for the Near East and North Africa - FAO - Food and Agriculture Organization of the United Nations [Rome, Italie], CLCPRO - Commission de Lutte Contre le Criquet Pèlerin en Région Occidentale)

  • Koutaro Ould Maeno

    (JIRCAS - Japan International Research Center for Agricultural Sciences)

  • Maria-José Escorihuela

    (isardSAT)

  • Giovanni Paolini

    (isardSAT)

  • Cyril Piou

    (UMR CBGP - Centre de Biologie pour la Gestion des Populations - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - IRD [Occitanie] - Institut de Recherche pour le Développement - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement - UM - Université de Montpellier, Cirad-BIOS - Département Systèmes Biologiques - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement)

Abstract

Highlights: • We built an operational forecasting system for Desert locust preventive management. • We used random forest model for real-time forecasting of locust presence and update every decade. • Pest distribution was explained by sand cover, ecoregions, temperature, precipitations and vegetation cover. • Field evaluation revealed a strong correlation between predicted probabilities and observed locust densities. Abstract: Desert locust (Schistocerca gregaria) is a major agricultural pest that poses significant socioeconomic challenges to food security. This study aims to enhance preventive management of desert locusts in Western and Northern Africa by improving an operational model developed by Piou et al. (2019). The model employs satellite remote sensing data and machine learning to forecast locust occurrence at a 1 km 2 resolution every ten days. Objectives include identifying environmental risk factors, training random forest models with high-predictive power and providing updated forecasts via a web interface. It is the first implementation of a statistical forecasting model for this species within an automated system, delivering updated locust presence probabilities every ten days. Validated through field surveys with a positive error rate of 23%, the forecasting tool shows a strong correlation between predicted probabilities and observed locust densities. This operational tool can guide survey teams, optimize resource allocation, and mitigate environmental impacts efficiently. We believe continuous evaluation and integration of the forecast system will enhance its effectiveness in preventing locust outbreaks, thereby safeguarding food security in the region.

Suggested Citation

  • Lucile Marescot & Elodie Fernandez & Hichem Dridi & Ahmed Salem Benahi & Mohamed Lemine Hamouny & Koutaro Ould Maeno & Maria-José Escorihuela & Giovanni Paolini & Cyril Piou, 2025. "A forecasting model for desert locust presence during recession period, using real-time satellite imagery," Post-Print hal-04995261, HAL.
  • Handle: RePEc:hal:journl:hal-04995261
    DOI: 10.1016/j.rsase.2025.101497
    Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-04995261v1
    as

    Download full text from publisher

    File URL: https://hal.inrae.fr/hal-04995261v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.rsase.2025.101497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mira Word Ries & Chris Adriaansen & Shoki Aldobai & Kevin Berry & Amadou Bocar Bal & Maria Cecilia Catenaccio & Maria Marta Cigliano & Darron A. Cullen & Ted Deveson & Aliou Diongue & Bert Foquet & Jo, 2024. "Global perspectives and transdisciplinary opportunities for locust and grasshopper pest management and research," Post-Print hal-04605947, HAL.
    2. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    3. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    4. Sorel, Maeva & Gay, Pierre-Emmanuel & Vernier, Camille & Cissé, Sory & Piou, Cyril, 2024. "Upwind flight partially explains the migratory routes of locust swarms," Ecological Modelling, Elsevier, vol. 489(C).
    5. Kenneth Hewitt, 2013. "Environmental disasters in social context: toward a preventive and precautionary approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(1), pages 3-14, March.
    6. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Jardin, 2025. "Designing Ensemble-Based Models Using Neural Networks and Temporal Financial Profiles to Forecast Firms’ Financial Failure," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 149-209, January.
    2. Stefan Feuerriegel & Mateusz Dolata & Gerhard Schwabe, 2020. "Fair AI," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(4), pages 379-384, August.
    3. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    4. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    5. repec:plo:pone00:0080906 is not listed on IDEAS
    6. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    7. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    8. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    9. Martin Lindegren & Vasilis Dakos & Joachim P Gröger & Anna Gårdmark & Georgs Kornilovs & Saskia A Otto & Christian Möllmann, 2012. "Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    10. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    11. Quentin Remy & Julius Hohlfeld & Maxime Vergès & Yann Le Guen & Jon Gorchon & Grégory Malinowski & Stéphane Mangin & Michel Hehn, 2023. "Accelerating ultrafast magnetization reversal by non-local spin transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    13. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    14. Cao, Jason & Tao, Tao, 2025. "Can an identified environmental correlate of car ownership serve as a practical planning tool?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    15. repec:iim:iimawp:14638 is not listed on IDEAS
    16. Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).
    17. Bastos, João A. & Matos, Sara M., 2022. "Explainable models of credit losses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
    18. Bhattacharya, Sourabh & Govindan, Kannan & Ghosh Dastidar, Surajit & Sharma, Preeti, 2024. "Applications of artificial intelligence in closed-loop supply chains: Systematic literature review and future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    19. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
    20. Corsi, Fulvio & Lillo, Fabrizio & Pirino, Davide & Trapin, Luca, 2018. "Measuring the propagation of financial distress with Granger-causality tail risk networks," Journal of Financial Stability, Elsevier, vol. 38(C), pages 18-36.
    21. Jeetesh Sharma & Murari Lal Mittal & Gunjan Soni, 2024. "Condition-based maintenance using machine learning and role of interpretability: a review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(4), pages 1345-1360, April.
    22. Florian Wagener, 2013. "Shallow lake economics run deep: nonlinear aspects of an economic-ecological interest conflict," Computational Management Science, Springer, vol. 10(4), pages 423-450, December.

    More about this item

    Keywords

    Automatic forecast system; Locust outbreak; Machine learning; Remote sensing; Schistocerca gregaria;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04995261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.