IDEAS home Printed from https://ideas.repec.org/p/grt/bdxewp/2022-15.html
   My bibliography  Save this paper

Characterising science-industry patent collaborations: knowledge base, impact and economic value

Author

Listed:
  • Ugo RIZZO
  • Valerio STERZI

Abstract

In this article, we analyse the characteristics of science-industry patents with respect to non-collaborative industry patents and industry-industry collaborative patents. This analysis covers patents filed in the years 1978-2015 (and granted up to 2020) at the European Patent Office (EPO) in four large European countries (Germany, France, Italy and the UK) and in the US. We consider three dimensions to assess the characteristics of patents: the knowledge base, the technological impact, and the economic value. Science-industry collaborative patents are averagely more sophisticated and similar or higher impact than other industry patents. However, depending on the proxy chosen, they are of similar or lower economic value compared to non-collaborative industry patents and to industry-industry collaborative patents. When we control for the experience of private companies in collaborating with academic institutions, we observe that more experienced collaborations produce slightly less sophisticated and impactful patents, but with higher economic value. We discuss different explanations of these findings.

Suggested Citation

  • Ugo RIZZO & Valerio STERZI, 2022. "Characterising science-industry patent collaborations: knowledge base, impact and economic value," Bordeaux Economics Working Papers 2022-15, Bordeaux School of Economics (BSE).
  • Handle: RePEc:grt:bdxewp:2022-15
    as

    Download full text from publisher

    File URL: http://bordeauxeconomicswp.u-bordeaux.fr/2022/2022-15.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    2. Antonio Messeni Petruzzelli & Gianluca Murgia, 2020. "University–Industry collaborations and international knowledge spillovers: a joint-patent investigation," The Journal of Technology Transfer, Springer, vol. 45(4), pages 958-983, August.
    3. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    4. Luigi Orsenigo & Valerio Sterzi, 2010. "Comparative Study of the Use of Patents in Different Industries," KITeS Working Papers 033, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised 2010.
    5. Jaffe, Adam B, 1989. "Real Effects of Academic Research," American Economic Review, American Economic Association, vol. 79(5), pages 957-970, December.
    6. Sterzi, Valerio, 2013. "Patent quality and ownership: An analysis of UK faculty patenting," Research Policy, Elsevier, vol. 42(2), pages 564-576.
    7. Giuseppe Medda & Claudio Piga & Donald Siegel, 2006. "Assessing the returns to collaborative research: Firm-level evidence from Italy," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(1), pages 37-50.
    8. Hellmann, Thomas, 2007. "The role of patents for bridging the science to market gap," Journal of Economic Behavior & Organization, Elsevier, vol. 63(4), pages 624-647, August.
    9. Arora, Ashish & Gambardella, Alfonso, 1994. "The changing technology of technological change: general and abstract knowledge and the division of innovative labour," Research Policy, Elsevier, vol. 23(5), pages 523-532, September.
    10. Ashish Arora & Sharon Belenzon & Andrea Patacconi, 2018. "The decline of science in corporate R&D," Strategic Management Journal, Wiley Blackwell, vol. 39(1), pages 3-32, January.
    11. Thursby, Jerry & Fuller, Anne W. & Thursby, Marie, 2009. "US faculty patenting: Inside and outside the university," Research Policy, Elsevier, vol. 38(1), pages 14-25, February.
    12. Ashish Arora & Sharon Belenzon & Andrea Patacconi & Jungkyu Suh, 2020. "The Changing Structure of American Innovation: Some Cautionary Remarks for Economic Growth," Innovation Policy and the Economy, University of Chicago Press, vol. 20(1), pages 39-93.
    13. Anthony Arundel & Aldo Geuna, 2004. "Proximity and the use of public science by innovative European firms," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 13(6), pages 559-580.
    14. Valerio Sterzi & Michele Pezzoni & Francesco Lissoni, 2019. "Patent management by universities: evidence from Italian academic inventions," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 28(2), pages 309-330.
    15. George, Gerard & Zahra, Shaker A. & Wood, D. Jr., 2002. "The effects of business-university alliances on innovative output and financial performance: a study of publicly traded biotechnology companies," Journal of Business Venturing, Elsevier, vol. 17(6), pages 577-609, October.
    16. repec:dau:papers:123456789/5023 is not listed on IDEAS
    17. Kaufmann, Alexander & Todtling, Franz, 2001. "Science-industry interaction in the process of innovation: the importance of boundary-crossing between systems," Research Policy, Elsevier, vol. 30(5), pages 791-804, May.
    18. E. Bacchiocchi & F. Montobbio, 2009. "Knowledge diffusion from university and public research. A comparison between US, Japan and Europe using patent citations," The Journal of Technology Transfer, Springer, vol. 34(2), pages 169-181, April.
    19. Mansfield, Edwin, 1998. "Academic research and industrial innovation: An update of empirical findings1," Research Policy, Elsevier, vol. 26(7-8), pages 773-776, April.
    20. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    21. Bronwyn H. Hall & Manuel Trajtenberg, 2004. "Uncovering GPTS with Patent Data," NBER Working Papers 10901, National Bureau of Economic Research, Inc.
    22. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    23. Catalina Martínez & Valerio Sterzi, 2021. "The impact of the abolishment of the professor’s privilege on European university-owned patents," Industry and Innovation, Taylor & Francis Journals, vol. 28(3), pages 247-282, March.
    24. Baba, Yasunori & Shichijo, Naohiro & Sedita, Silvia Rita, 2009. "How do collaborations with universities affect firms' innovative performance? The role of "Pasteur scientists" in the advanced materials field," Research Policy, Elsevier, vol. 38(5), pages 756-764, June.
    25. Rachel Levy & Pascale Roux & Sandrine Wolff, 2009. "An analysis of science–industry collaborative patterns in a large European University," The Journal of Technology Transfer, Springer, vol. 34(1), pages 1-23, February.
    26. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    27. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    28. Hall, Bronwyn H. & Helmers, Christian, 2013. "Innovation and diffusion of clean/green technology: Can patent commons help?," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 33-51.
    29. Schartinger, Doris & Schibany, Andras & Gassler, Helmut, 2001. "Interactive Relations between Universities and Firms: Empirical Evidence for Austria," The Journal of Technology Transfer, Springer, vol. 26(3), pages 255-268, June.
    30. Sapsalis, Eleftherios & van Pottelsberghe de la Potterie, Bruno & Navon, Ran, 2006. "Academic versus industry patenting: An in-depth analysis of what determines patent value," Research Policy, Elsevier, vol. 35(10), pages 1631-1645, December.
    31. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    32. Sampat, Bhaven N. & Mowery, David C. & Ziedonis, Arvids A., 2003. "Changes in university patent quality after the Bayh-Dole act: a re-examination," International Journal of Industrial Organization, Elsevier, vol. 21(9), pages 1371-1390, November.
    33. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    34. Valerio Sterzi & Michele Pezzoni & Francesco Lissoni, 2019. "Patent management by universities: evidence from Italian academic inventions," Industrial and Corporate Change, Oxford University Press, vol. 28(2), pages 309-330.
    35. Ajay Agrawal & Rebecca Henderson, 2002. "Putting Patents in Context: Exploring Knowledge Transfer from MIT," Management Science, INFORMS, vol. 48(1), pages 44-60, January.
    36. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    37. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    38. Mariagrazia Squicciarini & Hélène Dernis & Chiara Criscuolo, 2013. "Measuring Patent Quality: Indicators of Technological and Economic Value," OECD Science, Technology and Industry Working Papers 2013/3, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    2. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    3. Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
    4. Elena M. Tur & Evangelos Bourelos & Maureen McKelvey, 2022. "The case of sleeping beauties in nanotechnology: a study of potential breakthrough inventions in emerging technologies," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(3), pages 683-708, December.
    5. Giovanni Cerulli & Giovanni Marin & Eleonora Pierucci & Bianca Potì, 2022. "Do company-owned academic patents influence firm performance? Evidence from the Italian industry," The Journal of Technology Transfer, Springer, vol. 47(1), pages 242-269, February.
    6. Caviggioli, Federico & De Marco, Antonio & Montobbio, Fabio & Ughetto, Elisa, 2020. "The licensing and selling of inventions by US universities," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    7. Basse Mama, Houdou, 2018. "Nonlinear capital market payoffs to science-led innovation," Research Policy, Elsevier, vol. 47(6), pages 1084-1095.
    8. William Arant & Dirk Fornahl & Nils Grashof & Kolja Hesse & Cathrin Söllner, 2019. "University-industry collaborations—The key to radical innovations? [Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 39(2), pages 119-141, October.
    9. Nils Grashof & Holger Graf, 2023. "Universities that matter for regional knowledge base renewal - the role of multilevel embeddedness," Jena Economics Research Papers 2023-009, Friedrich-Schiller-University Jena.
    10. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2012. "The nexus between science and industry: evidence from faculty inventions," The Journal of Technology Transfer, Springer, vol. 37(5), pages 755-776, October.
    11. Catalina Martínez & Valerio Sterzi, 2021. "The impact of the abolishment of the professor’s privilege on European university-owned patents," Industry and Innovation, Taylor & Francis Journals, vol. 28(3), pages 247-282, March.
    12. Fabiano, Gianluca & Marcellusi, Andrea & Favato, Giampiero, 2021. "R versus D, from knowledge creation to value appropriation: Ownership of patents filed by European biotechnology founders," Technovation, Elsevier, vol. 108(C).
    13. Isabel Cavalli & Charlie Joyez, 2021. "The Dynamics of French Universities in Patent Collaboration Networks," GREDEG Working Papers 2021-38, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    14. Sterzi, Valerio, 2011. "Academic patent value and knowledge transfer in the UK. Does patent ownership matter?," MPRA Paper 34955, University Library of Munich, Germany.
    15. Sterzi, Valerio, 2013. "Patent quality and ownership: An analysis of UK faculty patenting," Research Policy, Elsevier, vol. 42(2), pages 564-576.
    16. van Burg, Elco & Du, Jingshu & Kers, Jannigje Gerdien, 2021. "When do academics patent outside their university? An in-depth case study," Technovation, Elsevier, vol. 107(C).
    17. Foray, Dominique & Lissoni, Francesco, 2010. "University Research and Public–Private Interaction," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 275-314, Elsevier.
    18. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    19. Francesco Lissoni & Fabio Montobbio, 2015. "The Ownership of Academic Patents and Their Impact. Evidence from Five European Countries," Revue économique, Presses de Sciences-Po, vol. 66(1), pages 143-171.
    20. Christopher L Benson & Christopher L Magee, 2015. "Quantitative Determination of Technological Improvement from Patent Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-23, April.

    More about this item

    Keywords

    University patent; patent value; patent collaboration; Science-Industry;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:grt:bdxewp:2022-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ernest Miguelez (email available below). General contact details of provider: https://edirc.repec.org/data/ifredfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.