IDEAS home Printed from https://ideas.repec.org/p/fir/econom/wp2010_01.html
   My bibliography  Save this paper

The Method of Simulated Scores for Estimating Multinormal Regression Models with Missing Values

Author

Listed:

Abstract

Given a set of continuous variables with missing data, we prove in this paper that the iterative application of a simple “least-squares estimation/multivariate normal simulation” procedure produces an efficient parameters estimator. There are two main assumptions behind our proof: (1) the missing data mechanism is ignorable; (2) the data generating process is a multivariate normal linear regression. Disentangling the iterative procedure and its convergence conditions, we show that the estimator is a “method of simulated scores” (a particular case of McFadden’s “method of simulated moments”), thus equivalent to maximum likelihood if the number of replications is conveniently large. We thus provide a non-Bayesian re-interpretation of the estimation/simulation problem. The computational procedure is obtained introducing a simple modification into existing algorithms. Its software implementation is straightforward (few simple statements in any programming language) and easily applicable to datasets with large number of variables.

Suggested Citation

  • Giorgio Calzolari & Laura Neri, 2010. "The Method of Simulated Scores for Estimating Multinormal Regression Models with Missing Values," Econometrics Working Papers Archive wp2010_01, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  • Handle: RePEc:fir:econom:wp2010_01
    as

    Download full text from publisher

    File URL: http://local.disia.unifi.it/ricerca/pubblicazioni/working_papers/2010/wp2010_01.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paul Kofman & Ian G. Sharpe, 2003. "Using Multiple Imputation in the Analysis of Incomplete Observations in Finance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(2), pages 216-249.
    2. Pollock, D. S. G., 2003. "Recursive estimation in econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 37-75, October.
    3. Foschi, Paolo & Belsley, David A. & Kontoghiorghes, Erricos J., 2003. "A comparative study of algorithms for solving seemingly unrelated regressions models," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 3-35, October.
    4. Belsley, David A. & John Kontoghiorghes, Erricos, 2005. "Second Special issue on Computational Econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 283-285, April.
    5. Vassilis A. Hajivassiliou, 1991. "Simulation Estimation Methods for Limited Dependent Variable Models," Cowles Foundation Discussion Papers 1007, Cowles Foundation for Research in Economics, Yale University.
    6. Bianchi, Carlo & Calzolari, Giorgio & Corsi, Paolo, 1978. "A Program for Stochastic Simulation of Econometric Models," Econometrica, Econometric Society, vol. 46(1), pages 235-236, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Simulated scores; missing data; multivariate normal regression model; estimation/simulation; general pattern of missingness; simultaneous equations; structural form; reduced form;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fir:econom:wp2010_01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Francesco Calvori). General contact details of provider: http://edirc.repec.org/data/dsfirit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.