IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/101742.html
   My bibliography  Save this paper

Out-of-Sample Inference with Annual Benchmark Revisions

Author

Abstract

This paper examines the properties of out-of-sample predictability tests evaluated with real-time data subject to annual benchmark revisions. The presence of both regular and annual revisions can create time heterogeneity in the moments of the real-time forecast evaluation function, which is not compatible with the standard covariance stationarity assumption used to derive the asymptotic theory of these tests. To cover both regular and annual revisions, we replace this standard assumption with a periodic covariance stationarity assumption that allows for periodic patterns of time heterogeneity. Despite the lack of stationarity, we show that the Clark and McCracken (2009) test statistic is robust to the presence of annual benchmark revisions. A similar robustness property is shared by the bootstrap test of Goncalves, McCracken, and Yao (2025). Monte Carlo experiments indicate that both tests provide satisfactory finite sample size and power properties even in modest sample sizes. We conclude with an application to U.S. employment forecasting in the presence of real-time data.

Suggested Citation

  • Silvia Goncalves & Michael W. McCracken & Yongxu Yao, 2025. "Out-of-Sample Inference with Annual Benchmark Revisions," Working Papers 2025-020, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:101742
    DOI: 10.20955/wp.2025.020
    as

    Download full text from publisher

    File URL: https://doi.org/10.20955/wp.2025.020
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.20955/wp.2025.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:101742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Scott St. Louis (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.