IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2025-36.html

Scenario Synthesis and Macroeconomic Risk

Author

Abstract

We introduce methodology to bridge scenario analysis and model-based risk forecasting, leveraging their respective strengths in policy settings. Our Bayesian framework addresses the fundamental challenge of reconciling judgmental narrative approaches with statistical forecasting. Analysis evaluates explicit measures of concordance of scenarios with a reference forecasting model, delivers Bayesian predictive synthesis of the scenarios to best match that reference, and addresses scenario set incompleteness. This underlies systematic evaluation and integration of risks from different scenarios, and quantifies relative support for scenarios modulo the defined reference forecasts. The framework offers advances in forecasting in policy institutions that supports clear and rigorous communication of evolving risks. We also discuss broader questions of integrating judgmental information with statistical model-based forecasts in the face of unexpected circumstances.

Suggested Citation

  • Tobias Adrian & Domenico Giannone & Matteo Luciani & Mike West, 2025. "Scenario Synthesis and Macroeconomic Risk," Finance and Economics Discussion Series 2025-036, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2025-36
    DOI: 10.17016/FEDS.2025.036
    as

    Download full text from publisher

    File URL: https://www.federalreserve.gov/econres/feds/files/2025036pap.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2025.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Markus K. Brunnermeier & Yuliy Sannikov, 2014. "A Macroeconomic Model with a Financial Sector," American Economic Review, American Economic Association, vol. 104(2), pages 379-421, February.
    2. Tobias Adrian & Federico Grinberg & Nellie Liang & Sheheryar Malik & Jie Yu, 2022. "The Term Structure of Growth-at-Risk," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(3), pages 283-323, July.
    3. Tony Chernis & Gary Koop & Emily Tallman & Mike West, 2024. "Decision synthesis in monetary policy," Papers 2406.03321, arXiv.org, revised Feb 2025.
    4. Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021. "Forecasting macroeconomic risks," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
    5. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2021. "Multimodality In Macrofinancial Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 861-886, May.
    6. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana & Juan F. Rubio-Ramirez & Martin Uribe, 2011. "Risk Matters: The Real Effects of Volatility Shocks," American Economic Review, American Economic Association, vol. 101(6), pages 2530-2561, October.
    7. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    8. Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023. "On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates," Journal of Econometrics, Elsevier, vol. 237(2).
    9. Jesús Fernández‐Villaverde & Samuel Hurtado & Galo Nuño, 2025. "Corrigendum: Financial Frictions and the Wealth Distribution," Econometrica, Econometric Society, vol. 93(4), pages 1491-1496, July.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024. "Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
    11. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gino Cateau & Don Coletti & Annie Portelance, 2025. "From models to communications: strenghtening risk management in monetary policy at the Bank of Canada," BIS Papers chapters, in: Bank for International Settlements (ed.), Monetary policy decision-making and communication under high uncertainty, volume 127, pages 51-58, Bank for International Settlements.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sui, Jianli & Lv, Wenqiang & Gao, Xiang & Koedijk, Kees G., 2024. "China’s GDP-at-Risk: Real-Time Monitoring, Risk Tracing, and Macroeconomic Policy Effects," Journal of International Money and Finance, Elsevier, vol. 147(C).
    2. Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021. "Forecasting macroeconomic risks," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
    3. Schick, Manuel, 2024. "Real-time Nowcasting Growth-at-Risk using the Survey of Professional Forecasters," Working Papers 0750, University of Heidelberg, Department of Economics.
    4. Efrem Castelnuovo & Lorenzo Mori, 2025. "Uncertainty, Skewness, and the Business Cycle Through the MIDAS Lens," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 89-107, January.
    5. Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023. "Empirically-transformed linear opinion pools," International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
    6. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2021. "Multimodality In Macrofinancial Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 861-886, May.
    7. Montes-Galdón, Carlos & Ajevskis, Viktors & Brázdik, František & Garcia, Pablo & Gatt, William & Lima, Diana & Mavromatis, Kostas & Ortega, Eva & Papadopoulou, Niki & De Lorenzo, Ivan & Kolb, Benedikt, 2024. "Using structural models to understand macroeconomic tail risks," Occasional Paper Series 357, European Central Bank.
    8. Maximilian Boeck & Massimiliano Marcellino & Michael Pfarrhofer & Tommaso Tornese, 2024. "Predicting Tail-Risks for the Italian Economy," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 20(3), pages 339-366, November.
    9. Martina Hengge, 2019. "Uncertainty as a Predictor of Economic Activity," IHEID Working Papers 19-2019, Economics Section, The Graduate Institute of International Studies.
    10. Jesús Fernández-Villaverde & Pablo A. Guerrón-Quintana, 2021. "Estimating DSGE Models: Recent Advances and Future Challenges," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 229-252, August.
    11. Deng, Chuang & Wu, Jian, 2023. "Macroeconomic downside risk and the effect of monetary policy," Finance Research Letters, Elsevier, vol. 54(C).
    12. Carboni, Giacomo & Fonseca, Luís & Fornari, Fabio & Urrutia, Leonardo, 2026. "Structural drivers of growth at risk: insights from a VAR-quantile regression approach," Working Paper Series 3171, European Central Bank.
    13. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana, 2020. "Uncertainty Shocks and Business Cycle Research," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 118-166, August.
    14. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
    15. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Vulnerable funding in the global economy," Journal of Banking & Finance, Elsevier, vol. 169(C).
    16. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    17. Raluca Maran, 2023. "Impact of macroprudential policy on economic growth in Indonesia: a growth-at-risk approach," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(3), pages 575-613, December.
    18. Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021. "Identifying indicators of systemic risk," Journal of International Economics, Elsevier, vol. 132(C).
    19. Andrey Polbin & Andrei Shumilov, 2025. "Nowcasting and forecasting Russian GDP and its components using quantile models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 79, pages 5-26.
    20. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2019. "Vulnerable Growth," American Economic Review, American Economic Association, vol. 109(4), pages 1263-1289, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2025-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.