IDEAS home Printed from https://ideas.repec.org/p/exe/wpaper/0807.html
   My bibliography  Save this paper

Representation and Weak Convergence of Stochastic Integrals with Fractional Integrator Processes

Author

Listed:
  • James Davidson

    (Department of Economics, University of Exeter)

  • Nigar Hashimzade

    (University of Reading)

Abstract

This paper considers the asymptotic distribution of the covariance of a nonstationary fractionally integrated process with the stationary increments of another such process - possibly, itself. Questions of interest include the relationship between the harmonic representation of these random variables, which we have analysed in a previous paper, and the construction derived from moving average representations in the time domain. The limiting integrals are shown to be expressible in terms of functionals of Itô integrals with respect to two distinct Brownian motions. Their mean is nonetheless shown to match that of the harmonic representation, and they satisfy the required integration by parts rule. The advantages of our approach over the harmonic analysis include the facts that our formulae are valid for the full range of the long memory parameters, and extend to non-Gaussian processes.

Suggested Citation

  • James Davidson & Nigar Hashimzade, 2008. "Representation and Weak Convergence of Stochastic Integrals with Fractional Integrator Processes," Discussion Papers 0807, Exeter University, Department of Economics.
  • Handle: RePEc:exe:wpaper:0807
    as

    Download full text from publisher

    File URL: http://people.exeter.ac.uk/cc371/RePEc/dpapers/DP0807.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. de Jong, Robert M. & Davidson, James, 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I," Econometric Theory, Cambridge University Press, vol. 16(05), pages 621-642, October.
    2. Davidson, James & Hashimzade, Nigar, 2008. "Alternative Frequency And Time Domain Versions Of Fractional Brownian Motion," Econometric Theory, Cambridge University Press, vol. 24(01), pages 256-293, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buchmann, Boris & Chan, Ngai Hang, 2013. "Unified asymptotic theory for nearly unstable AR(p) processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 952-985.
    2. Bent Jesper Christensen & Robinson Kruse & Philipp Sibbertsen, 2013. "A unified framework for testing in the linear regression model under unknown order of fractional integration," CREATES Research Papers 2013-35, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Stochastic integral; weak convergence; fractional Brownian motion.;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exe:wpaper:0807. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Carlos Cortinhas). General contact details of provider: http://edirc.repec.org/data/deexeuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.