IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Representation And Weak Convergence Of Stochastic Integrals With Fractional Integrator Processes

  • Davidson, James
  • Hashimzade, Nigar

This paper considers the asymptotic distribution of the covariance of a nonstationary frac- tionally integrated process with the stationary increments of another such process - possibly, itself. Questions of interest include the relationship between the harmonic representation of these random variables, which we have analysed in a previous paper, and the construction derived from moving average representations in the time domain. The limiting integrals are shown to be expressible in terms of functionals of Itô integrals with respect to two distinct Brownian motions. Their mean is nonetheless shown to match that of the harmonic rep- resentation, and they satisfy the required integration by parts rule. The advantages of our approach over the harmonic analysis include the facts that our formulae are valid for the full range of the long memory parameters, and extend to non-Gaussian processes.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://journals.cambridge.org/abstract_S0266466609990260
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 25 (2009)
Issue (Month): 06 (December)
Pages: 1589-1624

as
in new window

Handle: RePEc:cup:etheor:v:25:y:2009:i:06:p:1589-1624_99
Contact details of provider: Postal: Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK
Web page: http://journals.cambridge.org/jid_ECT
Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Davidson, James & de Jong, Robert M., 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals Ii," Econometric Theory, Cambridge University Press, vol. 16(05), pages 643-666, October.
  2. Davidson, James & Hashimzade, Nigar, 2008. "Alternative Frequency And Time Domain Versions Of Fractional Brownian Motion," Econometric Theory, Cambridge University Press, vol. 24(01), pages 256-293, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:25:y:2009:i:06:p:1589-1624_99. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.