IDEAS home Printed from https://ideas.repec.org/p/ekd/003306/330600076.html

Quantifying the Risk of Deflation

Author

Listed:
  • Lutz KILIAN
  • Simone MANGANELLI

Abstract

We propose formal and quantitative measures of the risk that future inflation will be excessively high or low relative to the range preferred by a private sector agent. Unlike alternative measures of risk, our measures are designed to make explicit the dependence of risk measures on the private sector agent's preferences with respect to inflation. We illustrate our methodology by estimating the risks of deflation for the United States, Germany, and Japan for horizons of up to 2 years. The question of how large these risks are has been subject to considerable public debate. We find that, as of September 2002 when this question first arose, there was no evidence of substantial deflation risks for the United States and for Germany, contrary to some conjectures at the time. In contrast, there was evidence of substantial deflation risks in Japan. Copyright 2007 The Ohio State University.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Lutz KILIAN & Simone MANGANELLI, 2010. "Quantifying the Risk of Deflation," EcoMod2004 330600076, EcoMod.
  • Handle: RePEc:ekd:003306:330600076
    as

    Download full text from publisher

    File URL: http://www.ecomod.net/sites/default/files/document-conference/ecomod2004/811.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    2. Kilian, Lutz & Manganelli, Simone, 2003. "The Central Banker as a Risk Manager: Quantifying and Forecasting Inflation Risks," CEPR Discussion Papers 3918, C.E.P.R. Discussion Papers.
    3. Svensson, Lars E. O., 2002. "Inflation targeting: Should it be modeled as an instrument rule or a targeting rule?," European Economic Review, Elsevier, vol. 46(4-5), pages 771-780, May.
    4. John Y. Campbell & Samuel B. Thompson, 2005. "Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?," Harvard Institute of Economic Research Working Papers 2084, Harvard - Institute of Economic Research.
    5. Svensson, Lars E. O., 1997. "Inflation forecast targeting: Implementing and monitoring inflation targets," European Economic Review, Elsevier, vol. 41(6), pages 1111-1146, June.
    6. Reifschneider, David L. & Stockton, David J. & Wilcox, David W., 1997. "Econometric models and the monetary policy process," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 47(1), pages 1-37, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    9. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 75, European Central Bank.
    10. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    11. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    12. Holthausen, Duncan M, 1981. "A Risk-Return Model with Risk and Return Measured as Deviations from a Target Return," American Economic Review, American Economic Association, vol. 71(1), pages 182-188, March.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kilian, Lutz & Manganelli, Simone, 2003. "The central bank as a risk manager: quantifying and forecasting inflation risks," Working Paper Series 226, European Central Bank.
    2. Remes, Piia, 2013. "Putting a Price on Carbon – Econometric Essays on the European Union Emissions Trading Scheme and its Impacts," Research Reports 62, VATT Institute for Economic Research.
    3. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    4. Aatola, Piia, 2013. "Putting a Price on Carbon – Econometric Essays on the European Union Emissions Trading Scheme and its Impacts," Research Reports P62, VATT Institute for Economic Research.
    5. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    6. Manganelli, Simone, 2007. "Asset allocation by penalized least squares," Working Paper Series 723, European Central Bank.
    7. Lutz Kilian & Simone Manganelli, 2008. "The Central Banker as a Risk Manager: Estimating the Federal Reserve's Preferences under Greenspan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1103-1129, September.
    8. Fildes, Robert, 2006. "The forecasting journals and their contribution to forecasting research: Citation analysis and expert opinion," International Journal of Forecasting, Elsevier, vol. 22(3), pages 415-432.
    9. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    10. Nadia Saleem, 2008. "Measuring Volatility of Inflation in Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 13(2), pages 99-128, Jul-Dec.
    11. Esparcia, Carlos & Jareño, Francisco & Umar, Zaghum, 2022. "Revisiting the safe haven role of Gold across time and frequencies during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    12. Buczyński Mateusz & Chlebus Marcin, 2018. "Comparison of Semi-Parametric and Benchmark Value-At-Risk Models in Several Time Periods with Different Volatility Levels," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(2), pages 67-82, June.
    13. Katherine Uylangco & Siqiwen Li, 2016. "An evaluation of the effectiveness of Value-at-Risk (VaR) models for Australian banks under Basel III," Australian Journal of Management, Australian School of Business, vol. 41(4), pages 699-718, November.
    14. Gonzales-Martínez, Rolando, 2009. "La Gestión de Riesgo de Liquidez en Economías Emergentes: Un Modelo Valor-en-Riesgo (VaR) Paramétrico de Calibración Indirecta y una Aplicación al Sistema Financiero Boliviano [Liquidity Risk Manag," MPRA Paper 14247, University Library of Munich, Germany.
    15. David Moreno & Paulina Marco & Ignacio Olmeda, 2005. "Risk forecasting models and optimal portfolio selection," Applied Economics, Taylor & Francis Journals, vol. 37(11), pages 1267-1281.
    16. Christiane Baumeister & Lutz Kilian, 2014. "Real-Time Analysis of Oil Price Risks Using Forecast Scenarios," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 62(1), pages 119-145, April.
    17. Adrián F. Rossignolo, 2021. "The New Standardised Approach as a Credible Fallback," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(TNEA), pages 1-27, Septiembr.
    18. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    19. Cociuba Mihail Ioan & Zapodeanu Daniela & Kulcsar Edina, 2014. "Backtesting Value At Risk Models In The Presence Of Structural Break On The Romanian And Hungarian Stock Markets," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 802-812, July.
    20. Christian A.Johnson, 2001. "Value at risk: teoría y aplicaciones," Estudios de Economia, University of Chile, Department of Economics, vol. 28(2 Year 20), pages 217-247, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ekd:003306:330600076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theresa Leary (email available below). General contact details of provider: https://edirc.repec.org/data/ecomoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.